|
|
Automatic well test interpretation based on convolutional neural network for a radial composite reservoir
|
LI Daolun,LIU Xuliang,ZHA Wenshu,YANG Jinghai,LU Detang
|
|
|
Table 3 Parameter interpretation values of the 6 samples selected and their absolute errors.
|
|
Sample | lg(M) | lg(F) | lg(RfD) | lg(CDe2S) | Real value | Interpreted value | Absolute error | Real value | Interpreted value | Absolute error | Real value | Interpreted value | Absolute error | Real value | Interpreted value | Absolute error | Val1 | 0.404 | 0.418 | -0.014 | -0.261 | -0.362 | 0.101 | 3.142 | 2.994 | 0.148 | 3.773 | 3.676 | 0.097 | Val2 | -0.124 | -0.127 | 0.003 | -0.314 | -0.018 | -0.296 | 5.877 | 5.839 | 0.038 | 8.296 | 8.390 | -0.094 | Val3 | 0.318 | 0.607 | -0.289 | 0.797 | 0.773 | 0.024 | 2.631 | 2.874 | -0.243 | 2.782 | 3.283 | -0.501 | Test1 | 0.882 | 0.872 | 0.01 | 0.592 | 0.641 | -0.049 | 1.059 | 1.057 | 0.002 | 0.143 | 0.148 | -0.005 | Test2 | 0.994 | 0.052 | 0.942 | -0.618 | -0.004 | -0.614 | 3.336 | 3.207 | 0.129 | 2.000 | 2.335 | -0.335 | Test3 | 0.589 | 0.568 | 0.021 | -0.472 | -0.417 | -0.055 | 2.826 | 2.783 | 0.043 | 2.687 | 2.655 | 0.032 |
|
|
|