Linear flow | Darcy seepage[4] | $\lambda \text{=}K/\mu $ |
Laminar pipe flow[11] | $\lambda ={{d}^{2}}/(32\mu )$ |
Nonlinear flow | Low speed non- Darcy flow[5] | $\lambda \text{=(}K/\mu )(1-G/|\partial p/\partial x|)$ |
High speed non- Darcy flow[6] | $\lambda \text{=1/}\left( \mu /K+\beta \rho \left| v \right| \right)$ |
Power law non- Newtonian flow[7] | $\lambda \text{= }\!\!|\!\!\text{ }v{{\text{ }\!\!|\!\!\text{ }}^{1-n}}K/{{\mu }_{\text{e}}}$ |
Stress sensitive non- Darcy flow[8] | $\lambda \text{=}\left( K/\mu \right){{\text{e}}^{\gamma \left( p-{{p}_{\text{i}}} \right)}}$ |
Turbulent tube flow[9] | $\lambda \text{=}2{{d}^{2}}\text{/}\left[ f(Re,e/d)\mu Re \right]$ |