A well test analysis model of generalized tube flow and seepage coupling
LIN Jia’en,HE Hui,WANG Yihua
Table 1 One-dimensional generalized mobility formula.
Flow law Generalized mobility
(derived from existing
research results)
Linear
flow
Darcy seepage[4] $\lambda \text{=}K/\mu $
Laminar pipe flow[11] $\lambda ={{d}^{2}}/(32\mu )$
Nonlinear
flow
Low speed non-
Darcy flow[5]
$\lambda \text{=(}K/\mu )(1-G/|\partial p/\partial x|)$
High speed non-
Darcy flow[6]
$\lambda \text{=1/}\left( \mu /K+\beta \rho \left| v \right| \right)$
Power law non-
Newtonian flow[7]
$\lambda \text{= }\!\!|\!\!\text{ }v{{\text{ }\!\!|\!\!\text{ }}^{1-n}}K/{{\mu }_{\text{e}}}$
Stress sensitive non-
Darcy flow[8]
$\lambda \text{=}\left( K/\mu \right){{\text{e}}^{\gamma \left( p-{{p}_{\text{i}}} \right)}}$
Turbulent tube flow[9] $\lambda \text{=}2{{d}^{2}}\text{/}\left[ f(Re,e/d)\mu Re \right]$