Orignal Article

Experimental simulation of dissolution law and porosity evolution of carbonate rock

  • SHE Min ,
  • SHOU Jianfeng ,
  • SHEN Anjiang ,
  • PAN Liyin ,
  • HU Anping ,
  • HU Yuanyuan
Expand
  • 1. PetroChina Hangzhou Institute of Geology, Hangzhou 310023, China;
    2. Key Laboratory of Carbonate Reservoir, CNPC, Hangzhou 310023, China

Online published: 2016-11-02

Abstract

Experiments of acetic acid (initial 0.2%) with porous dolostone, fractured-porous-vuggy dolostone, porous limestone and fractured limestone were done in a continuous flow diagenesis simulation system to find out the controlling factor of dissolution and dissolution effect. The results show that the dissolution quantity of carbonate rock inversely proportional to temperature and directly proportional to pressure, and the temperature effect is greater than the pressure effect. Therefore, relatively shallow burial and lower temperature environment is more beneficial to the formation of large scale carbonate dissolution pores. Quantitative comparison of porosity volume and permeability variation, and evolution of pores inside the rock before and after the experiment show that pore structure has apparent control over the carbonate dissolution and pore evolution. After dissolution, porous dolomite with homogeneous pore distribution saw rise in pore volume (matrix pore volume) and permeability, and remained as pore type in terms of reservoir space; porous limestone, with significant heterogeneity in original pores and texture, saw significant increase in pore volume and permeability, but the increased pores were fracture type, so its reservoir space turned into fracture-pore type; dissolution increased the permeability of fracture-pore dolomite and fracture limestone remarkably by 2-3 orders of magnitude; and the pores increased were mainly along dissolution fractures, turning the reservoir space into fracture-cave type.

Cite this article

SHE Min , SHOU Jianfeng , SHEN Anjiang , PAN Liyin , HU Anping , HU Yuanyuan . Experimental simulation of dissolution law and porosity evolution of carbonate rock[J]. Petroleum Exploration and Development, 2016 , 43(4) : 564 -572 . DOI: 10.11698/PED.2016.04.08

References

[1] 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12.
ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1): 1-12.
[2] 孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6): 641-649.
SUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.
[3] 朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造: 四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8): 2182-2194.
ZHU Guangyou, ZHANG Shuichang, LIANG Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR: An important type of deep-buried high-quality carbonate reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8): 2182-2194.
[4] 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192.
MA Yongsheng, CAI Xunyu, ZHAO Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
[5] 杨俊杰, 黄思静, 张文正, 等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报, 1995, 13(4): 49-54.
YANG Junjie, HUANG Sijing, ZHANG Wenzheng, et al. Experimental simulation of dissolution for carbonate with different composition under the conditions from epigenesist to burial diagenesis environment[J]. Acta Sedimentologica Sinica, 1995, 13(4): 49-54.
[6] 杨云坤, 刘波, 秦善, 等. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识[J]. 北京大学学报(自然科学版), 2014, 50(2): 316-322.
YANG Yunkun, LIU Bo, QIN Shan, et al. Re-recognition of deep carbonate dissolution based on the observation of in-situ simulation experiment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(2): 316-322.
[7] ALKATTAN M, OELKERS E H, DANDURAND J L, et al. An experimental study of calcite and limestone dissolution rates as a function of pH from-1 to 3 and temperature from 25 to 80℃[J]. Chemical Geology, 1998, 151(1/2/3/4): 199-214.
[8] LAURENT E, KRASSIMIRA M, FRANCI G, et al. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H 2 O-CO 2 solutions[J]. Geochimica et Cosmochimica Acta, 1999, 63(7/8): 989-1002.
[9] POKROVSKY O S,GOLUBEV S V, SCHOTT J, et al. Dissolution kinetics of calcite, dolomite and magnesite at 25 ℃ and 0 to 50 atm pCO 2 [J]. Chemical Geology, 2005, 217(3/4): 239-255.
[10] GONG Q J, DENG J, WANG Q F, et al. Experimental determination of calcite dissolution rates and equilibrium concentrations in deionized water approaching calcite equilibrium[J]. Journal of Earth Science, 2010, 21(2): 402-411.
[11] TAYLOR K C, NASR-EL-DINH A, MEHTA S. Anomalous acid reaction rates in carbonate reservoir rock[J]. SPE Journal, 2006, 11(4): 488-496.
[12] 王炜, 黄康俊, 鲍征宇, 等. 不同类型鲕粒灰岩储集层溶解动力学特征[J]. 石油勘探与开发, 2011, 38(4): 495-502.
WANG Wei, HUANG Kangjun, BAO Zhengyu, et al. Dissolution kinetics of different types of oolitic limestones in northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 2011, 38(4): 495-502.
[13] 佘敏, 寿建峰, 沈安江, 等. 埋藏有机酸性流体对白云岩储层溶蚀作用的模拟实验[J]. 中国石油大学学报(自然科学版), 2014, 38(3): 10-17.
SHE Min, SHOU Jianfeng, SHEN Anjiang, et al. Experimental simulation of dissolution and alteration of burial organic acid fluid on dolomite reservoir[J]. Journal of China University of Petroleum (Natural Science Edition), 2014, 38(3): 10-17.
[14] 崔振昂, 鲍征宇, 张天付, 等. 埋藏条件下碳酸盐岩溶解动力学实验研究[J]. 石油天然气学报, 2007, 29(3): 204-207.
CUI Zhen’ang, BAO Zhengyu, ZHANG Tianfu, et al. Dissolution kinetics of carbonate under buried conditions[J]. Journal of Oil and Gas Technology, 2007, 29(3): 204-207.
[15] 黄康俊, 王炜, 鲍征宇, 等. 埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用: 溶解动力学实验研究[J]. 地球化学, 2011, 40(3): 289-300.
HUANG Kangjun, WANG Wei, BAO Zhengyu, et al. Dissolution and alteration of Feixianguan Formation in the Sichuan Basin by organic acid fluids under burial condition: Kinetic dissolution experiments[J]. Geochemical, 2011, 40(3): 289-300.
[16] 范明, 胡凯, 蒋小琼, 等. 酸性流体对碳酸盐岩储层的改造作用[J]. 地球化学, 2009, 38(1): 20-26.
FAN Ming, HU Kai, JIANG Xiaoqiong, et al. Effect of acid fluid on carbonate reservoir reconstruction[J]. Geochemical, 2009, 38(1): 20-26.
[17] POKROVSKY O S, GOLUBEV S V, SCHOTT J, et al. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150℃ and 1 to 55 atm pCO 2 : New constraints on CO 2 sequestration in sedimentary basins[J]. Chemical Geology, 2009, 265(1/2): 20-32.
[18] SURDAM R C, CROSSEY L J, GEWAN M. Redox reactions involving hydrocarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones[J]. AAPG Bulletin, 1993, 77(9): 1509-1518.
[19] 金之钧, 朱东亚, 胡文瑄, 等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 2006, 80(2): 245-253.
JIN Zhijun, ZHU Dongya, HU Wenxuan, et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geological Sinica, 2006, 80(2): 245-253.
[20] LANGHORNE B, SMITHE J, GRAHAM R D. Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction[J]. AAPG Bulletin, 2006, 90(11): 1635-1640.
Outlines

/