ACADEMIC DISCUSSION

A comprehensive evaluation index for shale reservoirs and its application: A case study of the Ordovician Wufeng Formation to Silurian Longmaxi Formation in southeastern margin of Sichuan Basin, SW China

  • SHEN Cheng1 ,
  • REN Lan1 ,
  • ZHAO Jinzhou1 ,
  • TAN Xiucheng1 ,
  • WU Leize2
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China;
    2. Research Institute of Petroleum Engineering of Jianghan Oilfield Branch of Sinopec Corp., Wuhan 430035, China

Revised date: 2016-12-11

  Online published: 2017-07-27

Supported by

“十三五”国家科技攻关重大专项(2016ZX05060); 国家自然科学基金(51404204)

Abstract

Aiming at the disadvantages of existing shale reservoir evaluation methods, a new comprehensive index was proposed to accurately predict the distribution of high quality shale reservoirs and favorable fracturing intervals. The comprehensive index can be calculated using the physical properties index and fracturing index by the equivalent method. Computed by logging rock-electric parameters and mineral bulk physical model, the physical properties index characterizes reservoir property and gas-bearing property; the fracturing index characterizes reservoir fracability and is acquired by equivalent porous medium model considering mineral components. According to the comprehensive index, combined with the macro-micro characteristics of cores and logging data, the shale reservoirs in the Ordovician Wufeng Formation to Silurian Longmaxi Formation of Jiaoshiba area in the southeastern margin of Sichuan Basin are subdivided into four types, the high terrigenous siliceous and high authigenic siliceous types are the best in reservoir property and fracability, followed by the middle siliceous and then low siliceous. The comprehensive index can be used to interpret the logging data of horizontal well to figure out the proportion of reservoirs of different types, identify the spatial distribution of reservoirs with good physical properties and good fracability. The predicted results match well with actual production after fracturing.

Cite this article

SHEN Cheng1 , REN Lan1 , ZHAO Jinzhou1 , TAN Xiucheng1 , WU Leize2 . A comprehensive evaluation index for shale reservoirs and its application: A case study of the Ordovician Wufeng Formation to Silurian Longmaxi Formation in southeastern margin of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017 , 44(4) : 649 -658 . DOI: 10.11698/PED.2017.04.19

References

[1] 陈新军, 包书景, 侯读杰, 等. 页岩气资源评价方法与关键参数探讨[J]. 石油勘探与开发, 2012, 39(5): 566-571.
CHEN Xinjun, BAO Shujing, HOU Dujie, et al. Methods and key parameters of shale gas resources evaluation[J]. Petroleum Exploration and Development, 2012, 39(5): 566-571.
[2] 陈更生, 董大忠, 王世谦, 等. 页岩气藏形成机理与富集规律初探[J]. 天然气工业, 2009, 29(5): 17-21.
CHEN Gengsheng, DONG Dazhong, WANG Shiqian, et al. A preliminary study on accumulation mechanism and enrichment pattern of shale gas[J]. Natural Gas Industry, 2009, 29(5): 17-21.
[3] 李玉喜, 乔德武, 姜文利, 等. 页岩气含气量和页岩气地质评价综述[J]. 地质通报, 2011, 30(2): 308-317.
LI Yuxi, QIAO Dewu, JIANG Wenli, et al. Gas content of gas-bearing shale and its geological evaluation summary[J]. Geological Bulletin of China, 2011, 30(2): 308-317.
[4] ALZATE J H, DEEPAK D. Integration of surface seismic, microseismic, and production logs for shale gas characterization: Methodology and field application[J]. Interpretation, 2013, 1(2): 37-49.
[5] HU R, VERNIK L, NAYVELT L, et al. Seismic inversion for organic richness and fracture gradient in unconventional reservoirs: Eagle Ford Shale, Texas[J]. Leading Edge, 2015, 34(1): 80-84.
[6] 郭旭升, 尹正武, 李金磊. 海相页岩含气量地震定量预测技术及其应用: 以四川盆地焦石坝地区为例[J]. 石油地球物理勘探, 2015, 50(1): 144-149.
GUO Xusheng, YIN Zhengwu, LI Jinlei. Quantitative seismic prediction of marine shale gas content, a case study in Jiaoshiba area, Sichuan Basin[J]. Oil Geophysical Prospecting, 2015, 50(1): 144-149.
[7] ABOUELRESH M O, SLATT R M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 34-43.
[8] HAN C, JIANG Z, HAN M, et al. The lithofacies and reservoir characteristics of the Upper Ordovician and Lower Silurian black shale in the Southern Sichuan Basin and its periphery, China[J]. Marine & Petroleum Geology, 2016, 75: 181-191.
[9] OU C, RUI R, LI C, et al. Multi-index and two-level evaluation of shale gas reserve quality[J]. Journal of Natural Gas Science & Engineering, 2016, 35: 1139-1145.
[10] 石强, 陈鹏, 王秀芹, 等. 页岩气水平井高产层段判识方法及其应用: 以四川盆地威远页岩示范区下志留统龙马溪组为例[J]. 天然气工业, 2017, 37(1): 60-65.
SHI Qiang, CHEN Peng, WANG Xiuqin, et al. A method for identifying high-productivity intervals in a horizontal shale gas well and its application: A case study of the Lower Silurian Longmaxi Fm in Weiyuan Shale gas demonstration area, Sichuan basin[J]. Natural Gas Industry, 2017, 37(1): 60-65.
[11] GUO Z, CHAPMAN M, LI X. A shale rock physics model and its application in the prediction of brittleness index, mineralogy, and porosity of the Barnett Shale[C]//2012 SEG Annual Meeting. Las Vegas, Nevada: SEG, 2012.
[12] SHI X, LIU G, JIANG S, et al. Brittleness index prediction from conventional well logs in unconventional reservoirs using artificial intelligence[R]. IPTC 18776-MS, 2016.
[13] PAPANASTASIOU P, ATKINSON C. The brittleness index in hydraulic fracturing[R]. ARMA 15-489, 2015.
[14] GENG Z, CHEN M, JIN T, et al. Brittleness determination of rock using rock physics techniques calibrated with macro damage[R]. ARMA 15-268, 2015.
[15] 刘致水, 孙赞东. 新型脆性因子及其在泥页岩储集层预测中的应用[J]. 石油勘探与开发, 2015, 42(1): 117-124.
LIU Zhishui, SUN Zandong. New brittleness indexes and their application in shale/clay gas reservoir prediction[J]. Petroleum Exploration and Development, 2015, 42(1): 117-124.
[16] MATHIA E, RATCLIFFE K. Brittleness index: A parameter to embrace or avoid?[R]. URTeC 2448745, 2016.
[17] ROJAS L F, PEÑA Y Q, CARRILLO Z H C. Brittleness analysis: A methodology to identify sweet spots in shale gas reservoirs[R]. SPE 180955-MS, 2016.
[18] MITTAL R, ORUGANTI Y, MCBURNEY C. Re-fracturing simulations: Pressure-dependent SRV and shear dilation of natural fractures[R]. SPE 178631-MS, 2015.
[19] ANDERSON D M, THOMPSON J M, CADWALLADER S D, et al. Maximizing productive stimulated reservoir volume in the Eagle Ford: An infill case study[R]. URTeC 2430961, 2016.
[20] 邹才能, 丁云宏, 卢拥军, 等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154.
ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of “man-made reservoir” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154.
[21] OTTMANN J, BOHACS K. Conventional reservoirs hold keys to the ‘Un’s[J]. AAPG Explorer, 2014, 35(2): 26.
[22] 郭旭升. 南方海相页岩气“二元富集”规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.
GUO Xusheng. Rules of Two-Factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding areas[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
[23] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36.
GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
[24] 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素: 以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3): 893-901.
GUO Xusheng, HU Dongfeng, WEN Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology of China, 2014, 41(3): 893-901.
[25] 彭勇民, 龙胜祥, 胡宗全, 等. 四川盆地涪陵地区页岩岩石相标定方法与应用[J]. 石油与天然气地质, 2016, 37(6): 964-970.
PENG Yongmin, LONG Shengxiang, HU Zongquan, et al. Calibration method of shale petrological facies and its application in Fuling area, the Sichuan Basin[J]. Oil and Gas Geology, 2016, 37(6): 964-970.
[26] 张腾, 张烈辉, 唐洪明, 等. 页岩孔隙整合化表征方法: 以四川盆地下志留统龙马溪组为例[J]. 天然气工业, 2015, 35(12): 19-26.
ZHANG Teng, ZHANG Liehui, TANG Hongming, et al. An integrated shale pore characteristics method: A case study of the Lower Silurian Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2015, 35(12): 19-26.
[27] 黄仁春, 王燕, 程思洁, 等. 利用测井资料确定页岩储层有机碳含量的方法优选: 以焦石坝页岩气田为例[J]. 天然气工业, 2014, 34(12): 25-32.
HUANG Renchun, WANG Yan, CHENG Sijie, et al. Optimal selection of logging-based TOC calculation methods of shale reservoirs: A case study of the Jiaoshiba shale gas field, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 25-32.
[28] 赵金洲, 沈骋, 任岚, 等. 页岩储层不同赋存状态气体含气量定量预测: 以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2017, 37(4): 27-33.
ZHAO Jinzhou, SHEN Cheng, REN Lan, et al. Quantitative prediction of gas contents in different occurrence states of shale reservoirs: A case study of Jiaoshiba shale gasfield in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(4): 27-33.
[29] 赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法[J]. 天然气地球科学, 2015, 26(6): 1165-1172.
ZHAO Jinzhou, XU Wenjun, LI Yongming, et al. A new method for fracability evaluation of shale-gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(6): 1165-1172.
[30] VOIGT W. Crystal physics[M]. Leipzig: Teubner, 1928: 1-20.
[31] REUSS A. Stresses constant in composite, rule of mixtures for compliance components[J]. Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49-58.
[32] HILL R. The elastic behavior of crystalline aggregate[J]. Journal of Process Physical Society, 1952, 65(5): 349-354.
[33] BIOT M. Theory of propagation of elastic waves in a fluid saturated porous solid[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-191.
[34] MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook: Tools for seismic analysis of porous media[M]. Cambridge: Cambridge University Press, 2003.
[35] 王淑芳, 邹才能, 董大忠, 等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版), 2014, 50(3): 476-486.
WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Univesitatis Pekinensis, 2014, 50(3): 476-486.
[36] 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 1-9.
WU Lanyu, HU Dongfeng, LU Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 1-9.
[37] 付小东, 秦建中, 縢格尔, 等. 烃源岩矿物组成特征及油气地质意义: 以中上扬子古生界海相优质烃源岩为例[J]. 石油勘探与开发, 2011, 38(6): 671-684.
FU Xiaodong, QIN Jianzhong, TENGER, et al. Mineral components of source rocks and their petroleum significance: A case from Paleozoic marine source rocks in the Middle-Upper Yangtze region[J]. Petroleum Exploration and Development, 2011, 38(6): 671-684.
Outlines

/