[1] KONTOROVICH A E. Ways of development of petroleum resources of the Russian Arctic sector[J]. Herald of the Russian Academy of Sciences, 2015, 85(5/6): 420-430.
[2] CONNOLLY C A, WALTER L M, BAADSGAARD H, et al. Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin: I: Chemistry[J]. Applied Geochemistry, 1990, 5(4): 375-395.
[3] DILLON D P, TRUDELL M R, MOODER R B. Muskeg river mine expansion project: Hydrogeology, environmental setting, Muskeg river mine expansion[R]. Edmonton, Alberta, Canada: Komex International Ltd., 2004: 52.
[4] GASCOYNE M. Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba[J]. Applied Geochemistry, 2004, 19(4): 519-560.
[5] GRASBY S E, ZHUOHENG C, DEWING K. Formation water geochemistry of the Sverdrup Basin: Implications for hydrocarbon development in the High Arctic[J]. Applied Geochemistry, 2012, 27(8): 1623-1632.
[6] HANOR J S, NUNN J A, LEE Y. Salinity structure of the central North Slope foreland basin, Alaska, USA: Implications for pathways of past and present topographically driven regional fluid flow[J]. Geofluids, 2004, 4(2): 152-168.
[7] HITCHON B, SAUVEPLANE C M, UNDERSCHULTZ J R, et al. Hydrogeology, geopressures and hydrocarbon occurrences, Beaufort- Mackenzie Basin[J]. Bulletin of Canadian Petroleum Geology, 1990, 38(2): 215-235.
[8] STOTLER R L. Evolution of Canadian Shield groundwaters and gases: Influence of deep permafrost[D]. Ontario: University of Waterloo, 2008: 265.
[9] ANTSIFEROV А S. Hydrogeology of the most ancient intervals of the Siberian Craton[M]. Moscow: Nedra, 1989: 176.
[10] BUKATY M B. Geology and geochemistry of underground brines in the western portion of the Siberian Craton[D]. Tomsk: Institute of Oil and Gas, 1999: 264.
[11] GINSBURG G D, IVANOVA G A. On groundwaters of the Ust-Yenisei depression[R]. Leningrad: NIIGA, 1969: 66-72.
[12] KALINKO M K. Nordvik oil region (Anabar-Khatanga interfluve)[J]. Proceedings of NIIGA, 1958, 97: 96-125
[13] KARTSEV A, GATTENBERGER Y, ZORKIN L. Theoretical basis of petroleum hydrogeology[M]. Moscow: Nedra, 1992: 207.
[14] KONTOROVICH A, SURKOV V. Geology and mineral resources of Russia (Vol. 2): West Siberia[M]. Saint-Petersburg: VSEGEI, 2000: 477.
[15] KRUGLIKOV N, NELYUBIN V, YAKOVLEV O. Hydrogeology of the West Siberian petroleum basin and formation features of hydrocarbon fields[M]. Leningrad: Nedra, 1985: 279.
[16] MATUSEVICH V M, RYLKOV A V, USHATINSKY I N. Geofluid systems and issues on petroleum potential of the West Siberian megabasin[M]. Tuymen: Tuymen State Oil and Gas University, 2005: 225.
[17] NOVIKOV D A. Hydrogeology of the western part of the Yenisei- Khatanga regional trough[J]. Petroleum Geology: Theoretical and Applied Studies, 2013, 8(1): 1-29.
[18] NOVIKOV D A. Hydrodynamics of Neocomian petroleum deposits in a transition area from the West Siberian artesian basin to Khatanga basin[J]. Geology, Geophysics and Development of Oil and Gas Fields, 2014, 2: 24-33.
[19] VOZHOV V I. Hydrogeology of petroleum areas of the Siberian platform[M]. Novosibirsk: Nauka, 1982: 136.
[20] NOVIKOV D A, LEPOKUROV A V. Hydrogeological conditions of hydrocarbon deposits on the southern Yamal-Kara depression structures[J]. Oil and Gas Geology, 2005, 5: 24-33.
[21] SHVARTSEV S L, NOVIKOV D A. The nature of vertical hydrogeochemical zoning of petroleum deposits (exemplified by the Nadym-Taz interfluve, West Siberia)[J]. Geologiya I Geofizika, 2004, 45(8): 1008-1020.
[22] NOVIKOV D A, KOKH A A. Hydrodynamic conditions and vertical hydrogeochemical zoning of groundwaters in the western Khatanga Artesian Basin[J]. Water Resources, 2014, 41(4): 396-405.
[23] BOGOYAVLENSKY V I, POLYAKOVA I D, BUDAGOVA T A, et al. Geological and geophysical studies of oil and gas potential of offshore areas of Circumarctic segment of the Earth[J]. Journal of Petroleum Geology, 2011, 6: 45-58.
[24] NOVIKOV D A. Groundwater geochemistry of the Aptian-Albian- Cenomanian aquifer system in the Nadym-Taz interfluve[J]. Otechestvennaya Geologiya, 2005, 3: 73-82.
[25] NOVIKOV D A, SUKHORUKOVA A F. Hydrogeological conditions of petroleum deposits in the Berezovo oil and gas region (Western Siberia)[J]. Geology and Exploration, 2009, 5: 45-56.
[26] NOVIKOV D A, SHVARTSEV S L. Hydrogeological conditions of the Pre-Yenisei petroleum subprovince[J]. Russian Geology and Geophysics, 2009, 50(10): 873-883.
[27] HUDEC M R, JACKSON M P A. Terra infirma: Understanding salt tectonics[J]. Earth-Science Reviews, 2007, 82(1/2): 1-28.
[28] PRONKIN A P, SAVCHENKO V I, KHLEBNIKOV P A, et al. New data about geological structure and possible oil and gas potential of the West-Siberian and Siberian platform-jointing zone with folded Taimyr[J]. Oil and Gas Geology, 2012, 1: 30-44.
[29] PRONKIN A P, SAVCHENKO V I, TSEKHMEISTRYUK A K, et al. The main results of activity of GSC FGUGP “Yuzhmorgeology” in transit zones of water areas of Russia’s seas[J]. Oil and Gas Geology, 2011, 6: 21-30.
[30] IVANOV A A, LEVITSKY Y F. Geology of salt deposits (formations) in USSR[M]. Moscow: Gosgeoltechizdat, 1960: 423.
[31] CALLOT J P, JAHANI S, LETOUZEY J. The role of pre-existing diapirs in fold and thrust belt development[C]//LACOMBE O, LAVE J, ROURE F M, et al. Thrust belts and foreland basins: From fold kinematics to hydrocarbon systems. Berlin-Heidelberg: Springer-Verlag, 2007: 309-325.
[32] GHAZBAN F, AL-AASM I S. Hydrocarbon-induced diagenetic dolomite and pyrite formation associated with the Hormoz island salt dome, offshore Iran[J]. Journal of Petroleum Geology, 2010, 33(2): 183-196.
[33] JAHANI S, CALLOT J P, FRIZON DE LAMOTTE D, et al. The salt diapirs of the Eastern Fars Province (Zagros, Iran): A brief outline of their past and present[C]//LACOMBE O, LAVE J, ROURE F M, et al. Thrust belts and foreland basins: From fold kinematics to hydrocarbon systems. Berlin-Heidelberg: Springer-Verlag, 2007: 289-308.
[34] NOVIKOV D A. Distribution of Cambrian salts in the western Siberian craton (Yurubcheno-Tokhomo field, Russia)[J]. Arabian Journal of Geosciences, 2016, 10(1): 7.
[35] TALBOT C, AFTABI P, CHEMIA Z. Potash in a salt mushroom at Hormoz Island, Hormoz Strait[J]. Iran Ore Geology Reviews, 2009, 359(3/4): 317-332.
[36] AL-SIYABI H A. Exploration history of the Ara intrasalt carbonate stringers in the South Oman Salt Basin[J]. GeoArabia, 2005, 10(4): 39-72.
[37] MATTES B W, CONWAY M S. Carbonate/evaporite deposition in the Late Precambrian-Early Cambrian Ara formation of Southern Oman[J]. Geological Society Special Publications, 1990, 49(1): 617-636.
[38] SCHOENHERR J, SCHLE´DER Z, URAI J L, et al. Deformation mechanisms of deeply buried and surface-piercing Late Pre-Cambrian to Early Cambrian Ara Salt from interior Oman[J]. International Journal of Earth Sciences, 2010, 99(5): 1007-1025.
[39] ZAREI M, RAEISI E, MERKEL B J, et al. Identifying sources of salinization using hydrochemical and isotopic techniques, Konarsiah, Iran[J]. Environmental Earth Sciences, 2013, 70(2): 587-604.
[40] MURAD A A, GARAMOON H, HUSSEIN S, et al. Hydrogeochemical characterization and isotope investigations of a carbonate aquifer of the northern part of the United Arab Emirates[J]. Journal of Asian Earth Sciences, 2011, 40(1): 213-225.
[41] ZAREI M, RAEISI E. Karst development and hydrogeology of Konarsiah salt diapir, south of Iran[J]. Carbonates and Evaporites, 2010, 25(3): 217-229.
[42] RODRI´GUEZ-ESTRELLA T, PULIDO-BOSCH A. Gypsum karst evolution in a diapir: A case study (Pinoso, Alicante, Spain)[J]. Environmental Earth Science, 2010, 59(5): 1057-1063.
[43] NIEMANN H, ELVERT M, HOVLAND M, et al. Methane emission and consumption at a North Sea gas seep (Tommeliten area)[J]. Biogeosciences, 2005, 2(4): 335-351.
[44] MARGI F, BAYER U, PEKDEGER A, et al. Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin)[J]. Tectonophysics, 2009, 470(1/2): 183-194.