OILAND GAS FIELD DEVELOPMENT

Mechanism simulation of oil displacement by imbibition in fractured reservoirs

  • WANG Jing ,
  • LIU Huiqing ,
  • XIA Jing ,
  • LIU Yuetian ,
  • HONG Cheng ,
  • MENG Qingbang ,
  • GAO Yang ,
  • WANG Jing ,
  • LIU Huiqing ,
  • XIA Jing ,
  • LIU Yuetian ,
  • HONG Cheng ,
  • MENG Qingbang ,
  • GAO Yang
Expand
  • 1. State Key Laboratory of Petroleum Resources and Engineering in China University of Petroleum, Beijing 102249, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    3. PetroChina Xinjiang Oilfield Company, Karamay 834000, China

Received date: 2016-09-02

  Revised date: 2017-07-25

  Online published: 2017-09-18

Abstract

The mechanism model of both static and dynamic imbibition considering capillary pressure and gravity was presented based on the imbibition mechanisms and seepage theory. The validation of the model was performed using published experiment data. Then, this model was employed to study the impacts of oil viscosity, matrix permeability, core size, interface tension, and displacement rate on imbibitions. The results show that, the recovery decreases as oil viscosity increases, and the initial imbibition rate is much faster for lower viscosity oil. Imbibitions recovery is positively related to matrix permeability, the differences of oil recovery for low-permeability to tight oil reservoirs are obvious. Imbibitions effect is negatively related to core size. If the interface tension is low, imbibitions cannot occur without consideration of gravity. But it can occur even in very low interface tension scenario with consideration of gravity. On the whole, the recovery first increases and then decreases as the interface tension decreases. The gravity and capillary play different roles at different ranges of interface tension. There exists an optimal value range of displacement rate in fractured reservoir, which should be optimized with a sufficient oil production rate to achieve higher recovery.

Cite this article

WANG Jing , LIU Huiqing , XIA Jing , LIU Yuetian , HONG Cheng , MENG Qingbang , GAO Yang , WANG Jing , LIU Huiqing , XIA Jing , LIU Yuetian , HONG Cheng , MENG Qingbang , GAO Yang . Mechanism simulation of oil displacement by imbibition in fractured reservoirs[J]. Petroleum Exploration and Development, 2017 , 44(5) : 761 -770 . DOI: 10.11698/PED.2017.05.11

References

[1] ALVAREZ J O, SCHECHTER D S. Wettability alteration and spontaneous imbibition in unconventional liquid reservoirs by surfactant additives[R]. SPE 177057, 2017.
[2] 童凯军, 刘慧卿, 张迎春, 等. 变质岩裂缝性油藏水驱油特征三维物理模拟实验[J]. 石油勘探与开发, 2015, 42(4): 538-544.
TONG Kaijun, LIU Huiqing, ZHANG Yingchun, et al. Three-dimensional physical modeling of waterflooding in metamorphic fractured reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4): 538-544.
[3] 邹才能, 丁云宏, 卢拥军, 等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154.
ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154.
[4] WANG D, ZHANG J, BUTLER R. Scaling laboratory-data surfactant-imbibition rates to the field in fractured-shale formations[R]. SPE 178489, 2016.
[5] 揭克常. 东胜堡变质岩油藏[M]. 北京: 石油工业出版社, 1997.
JIE Kechang. The metamorphic rock reservoirs in Dongshengpu oilfield[M]. Beijing: Petroleum Industry Press, 1997.
[6] 王华芬. 王庄变质岩油藏[M]. 北京: 石油工业出版社, 1997.
WANG Huafen. The metamorphic rock reservoirs in Wangzhuang oilfield[M]. Beijing: Petroleum Industry Press, 1997.
[7] 王友净, 宋新民, 田昌炳, 等. 动态裂缝是特低渗透油藏注水开发中出现的新的开发地质属性[J]. 石油勘探与开发, 2015, 42(2): 222-228.
WANG Youjing, SONG Xinmin, TIAN Changbing, et al. Dynamic fractures are an emerging development geological attribute in water-flooding development of ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(2): 222-228.
[8] 柏松章. 对碳酸盐岩油藏驱替机理的初步探讨[J]. 石油勘探与开发, 1982, 8(3): 43-51.
BAI Songzhang. A preliminary discussion on water-oil displacement mechanism in a carbonate reservoir[J]. Petroleum Exploration and Development, 1982, 8(3):43-51.
[9] 周娟, 薛惠, 郑德温, 等. 裂缝油藏水驱油渗流机理[J]. 重庆大学学报(自然科学版), 2000, 10(23): 65-67.
ZHOU Juan, XUE Hui, ZHENG Dewen, et al. The mechanisms of water displacing oil in fractured reservoir[J]. Journal of Chongqing University (Natural Science Edition), 2000, 10(23): 65-67.
[10] 柏松章, 唐飞. 裂缝性潜山基岩油藏开发模式[M]. 北京: 石油工业出版社, 1997.
BAI Songzhang, TANG Fei. Fractured bedrock reservoir development modes in buried hill pools[M].Beijing: Petroleum Industry Press, 1997.
[11] 岳湘安, 王尤富, 王克亮, 等. 提高石油采收率基础[M]. 北京: 石油工业出版社, 2007.
YUE Xiangan, WANG Youfu, WANG Keliang, et al. Enhancing oil recovery[M]. Beijing: Petroleum Industry Press, 2007.
[12] CHAHARDOWLI M, ZHOLDYBAYEVA A, FARAJZADEH R. Solvent-enhanced spontaneous imbibition in fractured reservoirs[R]. SPE 164908, 2013.
[13] KAIYRZHAN M, HASSAN D, ERGUN K. An experimental study of spontaneous imbibition in Horn River Shales[R]. SPE 162650, 2012.
[14] QI Z, HAN M, FUSENI A, et al. Laboratory study on surfactant induced spontaneous imbibition for carbonate reservoir[R]. SPE 182322, 2016.
[15] LI K W, HORNE R N. Characterization of spontaneous water imbibition into gas-saturated rocks[R]. SPE 74703, 2001.
[16] LUNDBLAD A, BERGMAN B. Determination of contact-angle in porous molten-carbonate fuel-cell electrodes[J]. Journal of Electrochemical Society, 1997, 144(3): 984-987.
[17] HAMMECKER C, JEANNETTE D. Modelling the capillary imbibition kinetics in sedimentary rock: Rock of petrographical features[J]. Transport in Porous Media, 1994, 17(3): 285-303.
[18] SCHECHTER D S, ZHOU D, ORR F M. Low IFT drainage and imbibition[J]. Journal of Petroleum Science & Engineering, 1994, 11(4): 283-300.
[19] CLERKE E A, FUNK J J, SHTEPANI E. Spontaneous imbibition of water into oil saturated M_1 Bimodal Limestone[R]. IPTC 17162-MS, 2013.
[20] 孙琳, 蒲万芬, 辛军, 等. 表面活性剂对低渗岩心高温渗吸的影响[J]. 中国石油大学学报(自然科学版), 2012, 36(6): 103-107.
SUN Lin, PU Wanfen, XIN Jun, et al. Influence of surfactant on high temperature imbibition of low permeability cores[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(6): 103-107.
[21] SCHMID K S, ALYAFEI N, GEIGER S, et al. Analytical solutions for spontaneous imbibition: Fractional-flow theory and experimental analysis[R]. SPE 184393, 2016.
[22] 王家禄, 刘玉章, 陈茂谦, 等. 低渗透油藏裂缝动态渗吸机理实验研究[J]. 石油勘探与开发, 2009, 36(1): 86-90.
WANG Jialu, LIU Yuzhang, CHEN Maoqian, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs[J]. Petroleum Exploration and Development, 2009, 36(1): 86-90.
[23] DARVISH M P, FIROOZABADI A. Cocurrent and countercurrent imbibition in a water-wet matrix block[R]. SPE 38443, 2000.
[24] COREY A T. The interrelation between gas and oil relative permeabilities[J]. Producers Monthly, 1954, 19(1): 32-41.
[25] BURDINE N T. Relative permeability calculations from pore size distribution data[J]. Journal of Petroleum Technology, 1953, 5(3): 71-78.
[26] CIL M, REIS J C, MILLER M A, et al. An examination of countercurrent capillary imbibition recovery from single matrix blocks and recovery predictions by analytical matrix/fracture transfer functions[R]. SPE 4900, 1998.
[27] KALAEI M H, GREEN D W, WILLHITE G P. Numerical modeling of the water imbibition process in water-wet laboratory cores[R]. SPE 132645, 2010.
Outlines

/