OILAND GAS FIELD DEVELOPMENT

Experiments on gas supply capability of commingled production in a fracture-cavity carbonate gas reservoir

Expand
  • 1. State Key Laboratory of Petroleum Resource and Engineering, China University of Petroleum-Beijing, Beijing 102249, China;
    2. Exploration and Development Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu 610041, China

Received date: 2017-02-13

  Revised date: 2017-06-13

  Online published: 2017-09-18

Abstract

The CT scan, mercury intrusion test and commingled production physical simulation experiment of the cores of pore-type, cavity-type and fracture-cave reservoirs was conducted to study the effects of interlayer heterogeneity, drawdown pressure, water saturation and water invasion on gas supply capacity. The experimental results were verified by the radial numerical model of multilayer commingled production based on the Eclipse software. The experimental results showed that: the fracture-cavity type reservoir, with strong seepage capability, makes great contribution to gas production in the early stage, while the pore-type and cavity-type reservoirs with weak seepage capability, make more contribution to gas production in the middle and late stages; the absolute permeability of the reservoir affects its contribution to productivity, while the relative permeability of reservoir affects the total recovery; the “dynamic supply balance” state among various reservoirs can be achieved at a reasonable drawdown pressure; although the fracture-cavity reservoir is less affected by edge and bottom water, water breakthrough will first occur in this type reservoir and block other reservoirs, significantly reducing the commingled gas supply capacity and recovery.

Cite this article

WANG Lu, YANG Shenglai, LIU Yicheng, XU Wei, DENG Hui, MENG Zhan, HAN Wei, QIAN Kun . Experiments on gas supply capability of commingled production in a fracture-cavity carbonate gas reservoir[J]. Petroleum Exploration and Development, 2017 , 44(5) : 779 -787 . DOI: 10.11698/PED.2017.05.13

References

[1] 彭松, 郭平. 缝洞型碳酸盐岩凝析气藏注水开发物理模拟研究[J]. 石油实验地质, 2014, 36(5): 645-649.
PENG Song, GUO Ping. Physical simulation of exploiting fractured-vuggy carbonate gas condensate reservoirs by water injection[J]. Petroleum Geology & Experiment, 2014, 36(5): 645-649.
[2] 李阳. 塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J]. 石油学报, 2013, 34(1): 115-121.
LI Yang. The theory and method for development of carbonate fractured-cavity reservoirs in Tahe oilfield[J]. Acta Petrolei Sinica, 2013, 34(1): 115-121.
[3] 高树生, 刘华勋, 任东, 等. 缝洞型碳酸盐岩储层产能方程及其影响因素分析[J]. 天然气工业, 2015, 35(9): 48-54.
GAO Shusheng, LIU Huaxun, REN Dong, et al. Deliverability equation of fracture-cave carbonate reservoirs and its influential factors[J]. Natural Gas Industry, 2015, 35(9): 48-54.
[4] 贾爱林, 闫海军. 不同类型典型碳酸盐岩气藏开发面临问题与对策[J]. 石油学报, 2014, 35(3): 519-527.
JIA Ailin, YAN Haijun. Problems and countermeasures for various types of typical carbonate gas reservoirs development[J]. Acta Petrolei Sinica, 2014, 35(3): 519-527.
[5] 李成勇, 蒋裕强, 伍勇, 等. 多层合采气藏井底压力响应模型通解[J]. 天然气工业, 2010, 30(9): 39-41.
LI Chengyong, JIANG Yuqiang, WU Yong, et al. General solution of bottomhole pressure response models in commingling production of stratified gas reservoirs[J]. Natural Gas Industry, 2010, 30(9): 39-41.
[6] 杨波, 唐海, 周科, 等. 多层合采气井合理配产简易新方法[J]. 油气井测试, 2010, 19(1): 66-68.
YANG Bo, TANG Hai, ZHOU Ke, et al. A simple new method of proper proration for multi-layered commingled gas wells[J]. Well Testing, 2010, 19(1): 66-68.
[7] SPATH J, OZKAN E, RAGHAVAN R. An efficient algorithm for computation of well responses in commingled reservoirs[J]. SPE Formation Evaluation, 1994, 9(2): 115-121.
[8] AGARWAL B, CHEN H Y, RAGHAVAN R. Buildup behaviors in commingled reservoir systems with unequal initial pressure distributions: Interpretation[R]. SPE 24680, 1992.
[9] AREVALO-VILLAGRAN J, WATTENBARGER R, EL-BANBI A. Production analysis of commingled gas reservoirs:Case histories[R]. SPE 58985, 2000.
[10] 刘启国, 王辉, 王瑞成, 等. 多层气藏井分层产量贡献计算方法及影响因素[J]. 西南石油大学学报(自然科学版), 2010, 32(1): 80-84.
LIU Qiguo, WANG Hui, WANG Ruicheng, et al. A computing method for layered production contribution and affecting factors analyzing in commingled gas reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(1): 80-84.
[11] CHENG Y, LEE W J, MCVAY D A. Improving reserves estimates from decline-curve analysis of tight and multilayer gas wells[R]. SPE 108176, 2007.
[12] 晏宁平, 王旭, 吕华, 等. 鄂尔多斯盆地靖边气田下古生界非均质性气藏的产量递减规律[J]. 天然气工业, 2013, 33(2): 43-47.
YAN Ningping, WANG Xu, LYU Hua, et al. Deliverability decline law of heterogeneous Lower Paleozoic gas reservoirs in the Jingbian Gas Field, Ordos Basin[J]. Natural Gas Industry, 2013, 33(2): 43-47.
[13] 王卫红, 沈平平, 马新华, 等. 非均质低渗透气藏储层动用能力及影响因素研究[J]. 天然气地球科学, 2005, 16(1): 93-97.
WANG Weihong, SHEN Pingping, MA Xinhua, et al. Study on producing ability of reservoirs and influence factors in heterogeneous[J]. Natural Gas Geoscience, 2005, 16(1): 93-97.
[14] 胡勇, 李熙喆, 万玉金, 等. 高低压双气层合采产气特征[J]. 天然气工业, 2009, 29(2): 89-91.
HU Yong, LI Xizhe, WAN Yujin, et al. Gas producing property of commingled production for high-low pressure double gas reservoir[J]. Natural Gas Industry, 2009, 29(2): 89-91.
[15] 游利军, 李雷, 康毅力, 等. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学, 2012, 23(4): 764-769.
YOU Lijun, LI Lei, KANG Yili, et al. Gas supply capacity of tight sandstone in considering effective stress and water saturation[J]. Natural Gas Geoscience, 2012, 23(4): 764-769.
[16] 朱华银, 胡勇, 李江涛, 等. 柴达木盆地涩北多层气藏合采物理模拟[J]. 石油学报, 2013, 34(S1): 136-142.
ZHU Huayin, HU Yong, LI Jiangtao, et al. Physical simulation of commingled production for multilayer gas reservoir in Sebei gas field, Qaidam Basin[J]. Acta Petrolei Sinica, 2013, 34(S1): 136-142.
[17] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293.
ZHOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.
[18] 唐洪明, 文鑫, 张旭阳, 等. 层间非均质砾岩油藏水驱油模拟实验[J]. 西南石油大学学报(自然科学版), 2014, 36(5): 129-135.
TANG Hongming, WEN Xin, ZHANG Xuyang, et al. Water-oil displacing modeling experiment of interlayer heterogeneous conglomerate reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(5): 129-135.
[19] 蔡忠. 储集层孔隙结构与驱油效率关系研究[J]. 石油勘探与开发, 2000, 27(6): 45-46.
CAI Zhong. The study on the relationship between pore structure and displacement efficiency[J]. Petroleum Exploration and Development, 2000, 27(6): 45-46.
[20] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970.
XIAO Dianshi, LU Shuangfang, LU Zhengyuan, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970.
[21] 游利军, 康毅力, 陈一健. 致密砂岩含水饱和度建立新方法: 毛管自吸法[J]. 西南石油学院学报, 2005, 27(1): 28-31.
YOU Lijun, KANG Yili, CHEN Yijian. New method of water saturation of tight gas-spontaneous imbibition[J]. Journal of Southwest Petroleum Institute, 2005, 27(1): 28-31.
[22] LEI H, YANG S, QIAN K, et al. Experimental investigation and application of the asphaltene precipitation envelope[J]. Energy & Fuels, 2015, 29(11): 6920-6927.
[23] LEI H, YANG S, ZU L, et al. Oil recovery performance and CO 2 storage potential of CO 2 water-alternating-gas injection after continuous CO 2 injection in a multilayer formation[J]. Energy & Fuels, 2016, 30(11): 8922-8931.
[24] 游利军, 康毅力, 陈一键, 等. 考虑裂缝和含水饱和度的致密砂岩应力敏感性[J]. 中国石油大学学报(自然科学版), 2006, 30(2): 59-63.
YOU Lijun, KANG Yili, CHEN Yijian, et al. Stress sensitivity of fractured tight gas sands in consideration of fractures and water saturation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(2): 59-63.
Outlines

/