[1] ALVAREZ J O, SCHECHTER D S. 非常规油气开发中润湿性反转技术的应用[J]. 石油勘探与开发, 2016, 43(5): 764-771.
ALVAREZ J O, SCHECHTER D S. Application of wettability alteration in the exploitation of unconventional liquid resources[J]. Petroleum Exploration and Development, 2016, 43(5): 764-771.
[2] 刘卫东, 罗莉涛, 廖广志, 等. 聚合物-表面活性剂二元驱提高采收率机理实验[J]. 石油勘探与开发, 2017, 44(4): 600-607.
LIU Weidong, LUO Litao, LIAO Guangzhi, et al. Experimental study on the mechanism of enhancing oil recovery by polymer-surfactant binary flooding[J]. Petroleum Exploration and Development, 2017, 44(4): 600-607.
[3] NASRALLA R A, NASR-EL-DIN H A. Double-layer expansion: Is it a primary mechanism of improved oil recovery by low-salinity waterflooding?[R]. SPE Reservoir Evaluation & Engineering, 2014, 17(1): 49-59.
[4] HUA Z, LI M, NI X, et al. Effect of injection brine composition on wettability and oil recovery in sandstone reservoirs[J]. Fuel, 2016, 182: 687-695.
[5] REZAEIDOUST A, PUNTERVOLD T, STRAND S, et al. Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms[J]. Energy & Fuels, 2009, 23(9): 4479-4485.
[6] VLEDDER P, GONZALEZ I, FONSECA J C, et al. Low salinity water flooding: Proof of wettability alteration on a field wide scale[R]. SPE 129564, 2010.
[7] 黄昌武. 2014年石油十大科技进展[J]. 石油勘探与开发, 2015, 42(5): 645.
HUANG Changwu. The 10 great advances of petroleum science and technology in 2014[J]. Petroleum Exploration and Development, 2015, 42(5): 645.
[8] LAGER A, WEBB K J, COLLINS I R, et al. LoSal enhanced oil recovery: Evidence of enhanced oil recovery at the reservoir scale[R]. SPE 113976, 2008.
[9] SKRETTINGLAND K, HOLT T, TWEHEYO M T, et al. Snorre low-salinity-water injection-coreflooding experiments and single-well field pilot[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(2): 182-192.
[10] SKRETTINGLAND K, HOLT T, TWEHEYO M T, et al. Snorre low salinity water injection-core flooding experiments and single well field pilot[R]. SPE 129877, 2010.
[11] MAHANI H, SOROP T, LIGTHELM D J, et al. Analysis of field responses to low-salinity waterflooding in secondary and tertiary mode in Syria[R]. SPE 142960, 2011.
[12] CARRÉ A, LACARRIERE V. Study of surface charge properties of minerals and surface: Modified substrates by wettability measurements[J]. Contact Angle, Wettability and Adhesion, 2006, 4: 1-14.
[13] BRANTLEY S L, STILLINGS L. Feldspar dissolution at 25 ℃ and low pH[J]. American Journal of Science, 1996, 296: 101-127.
[14] HU Y, LIU X. Chemical composition and surface property of kaolins[J]. Minerals Engineering, 2003, 16(11): 1279-1284.
[15] MILLER J D, NALASKOWSKI J, ABDUL B, et al. Surface characteristics of kaolinite and other selected two layer silicate minerals[J]. The Canadian Journal of Chemical Engineering, 2007, 85(5): 617-624.
[16] ŠOLC R, GERZABEK M H, LISCHKA H, et al. Wettability of kaolinite (001) surfaces: Molecular dynamic study[J]. Geoderma, 2011, 169(9): 47-54.
[17] HIORTH A, CATHLES L M, MADLAND M V. The impact of pore water chemistry on carbonate surface charge and oil wettability[J]. Transport in Porous Media, 2010, 85(1): 1-21.
[18] ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. San Diego: Academic Press, 2011.
[19] GAN Y, FRANKS G V. Charging behavior of the gibbsite basal (001) surface in NaCl solution investigated by AFM colloidal probe technique[J]. Langmuir, 2006, 22(14): 6087-6092.
[20] ZHU Z, LI M, LIN M, et al. Investigation on variations in wettability of reservoir rock induced by CO 2 -brine-rock interactions[R]. SPE 142979, 2011.
[21] AUSTAD T, REZAEIDOUST A, PUNTERVOLD T. Chemical mechanism of low salinity water flooding in sandstone reservoirs[R]. SPE 129767, 2010.
[22] DUBEY S T, DOE P H. Base number and wetting properties of crude oils[J]. SPE Reservoir Engineering, 1993, 8(3): 195-200.
[23] 杨胜来, 魏俊之. 油层物理学[M]. 北京: 石油工业出版社, 2004.
YANG Shenglai, WEI Junzhi. Fundamentals of petrophysics[M]. Beijing: Petroleum Industry Press, 2004.
[24] 李明远, 吴肇亮. 石油乳状液[M]. 北京: 科学出版社, 2009.
LI Mingyuan, WU Zhaoliang. Petroleum emulsion[M]. Beijing: Science Press, 2009.
[25] GONZÁLEZ G, MOREIRA M B C. The wettability of mineral surfaces containing adsorbed asphaltene[J]. Colloids & Surfaces, 1991, 58(3): 293-302.
[26] HARDING I H, HEALY T W. Electrical double layer properties of amphoteric polymer latex colloids[J]. Journal of Colloid and Interface Science, 1985, 107(2): 382-397.
[27] KOU J, TAO D, XU G. A study of adsorption of dodecylamine on quartz surface using quartz crystal microbalance with dissipation[J]. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 2010, 368(1): 75-83.
[28] FARMER V C, MORTLAND M M. An infrared study of the co-ordination of pyridine and water to exchangeable cations in montmorillonite and saponite[J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966: 344-351.
[29] SWOBODA A R, KUNZE G W. Infrared study of pyridine adsorbed on montmorillonite surfaces[J]. Clays & Clay Minerals, 1964, 13(1): 277-288.
[30] WU Y, SHULER P J, BLANCO M, et al. An experimental study of wetting behavior and surfactant EOR in carbonates with model compounds[J]. SPE Journal, 2008, 13(1): 26-34.
[31] KAROUSSI O, HAMOUDA A A. Macroscopic and nanoscale study of wettability alteration of oil-wet calcite surface in presence of magnesium and sulfate ions[J]. Journal of Colloid and Interface Science, 2008, 317(1): 26-34.
[32] LAGER A, WEBB K J, BLACK C J J, et al. Low salinity oil recovery: An experimental investigation[J]. Petrophysics, 2006, 49(1): 28-35.
[33] LIGTHELM D, GRONSVELD J, HOFMAN J, et al. Novel waterflooding strategy by manipulation of injection brine composition[R]. SPE 119835, 2009.
[34] ARNARSON T S, KEIL R G. Mechanisms of pore water organic matter adsorption to montmorillonite[J]. Marine Chemistry, 2000, 71(3): 309-320.
[35] SPOSITO G. The chemistry of soils[M]. Oxford: Oxford University Press, 2008.
[36] HIRASAKI G J. Wettability: Fundamentals and surface forces[J]. SPE Formation Evaluation, 1991, 6(2): 217-226.
[37] TAKAHASHI S. Water imbibition, electrical surface forces, and wettability of low permeability fractured porous media[D]. Stanford: Stanford University, 2009.
[38] 华朝, 李明远, 林梅钦, 等. 利用表面电势表征砂岩储层岩石表面润湿性[J]. 中国石油大学学报(自然科学学报), 2015, 39(2): 142-150.
HUA Zhao, LI Mingyuan, LIN Meiqin, et al. Evaluation of sandstone surface wettability by surface potential[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 142-150.
[39] 朱子涵. 砂岩储层岩石表面的亲水性与CO 2 的影响[D]. 北京: 中国石油大学(北京), 2011.
ZHU Zihan. Hydrophilicity of sandstone surface and effect of CO 2 on it[D]. Beijing: China University of Petroleum (Beijing), 2011.
[40] 曲希玉. CO 2 流体-砂岩相互作用的实验研究及其在CO 2 气储层中的应用[D]. 长春: 吉林大学, 2007.
QU Xiyu. The experiment research of CO 2 -sandstone interaction, and application in CO 2 gas reservoir[D]. Changchun: Jilin University, 2007.
[41] DAUGHNEY C J. Sorption of crude oil from a non-aqueous phase onto silica: The influence of aqueous pH and wetting sequence[J]. Organic Geochemistry, 2000, 31(2): 147-158.
[42] MADSEN L, IDA L. Adsorption of carboxylic acids on reservoir minerals from organic and aqueous phase[R]. SPE 37292-PA, 1998.
[43] YUKSELEN Y, KAYA A. Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions[J]. Water, Air and Soil Pollution, 2003, 145(1/2/3/4): 155-168.
[44] LAGER A, WEBB K J, BLACK C. Impact of brine chemistry on oil recovery[R]. Cairo: 14th European Symposium on Improved Oil Recovery, 2007.
[45] SUIJKERBUIJK B, HOFMAN J, LIGTHELM D, et al. Fundamental investigations into wettability and low salinity flooding by parameter isolation[R]. SPE 154204, 2012.
[46] RUESLATTEN H G, HJELMELAND O, SELLE O M. Wettability of reservoir rocks and the influence of organo-metallic compounds[J]. North Sea Oil and Gas Reservoir, 1994, 3: 317-324.
[47] WEBB K J, BLACK C, EDMONDS I J. Low salinity oil recovery: The role of reservoir condition corefloods[R]. Budapest: 13th European Symposium on Improved Oil Recovery, 2005.
[48] HAMAM S E, HAMODA M F, SHABAN H I, et al. Crude oil dissolution in saline water[J]. Water, Air and Soil Pollution, 1988, 37(1/2): 55-64.