[1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178.
ZOU Caineng, DONG Dazhong, WANG Yuman, et al.Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178.
[2] 吴蓝宇, 胡东风, 陆永潮, 等. 四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J]. 石油勘探与开发, 2016, 43(2): 189-197.
WU Lanyu, HU Dongfeng, LU Yongchao, et al.Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197.
[3] DONG Z, HOLDITCH S, MCVAY D.Resource evaluation for shale gas reservoirs[J]. SPE Economics & Management, 2013, 5(1): 5-16.
[4] VINCENT M C.The next opportunity to improve hydraulic-fracture stimulation[J]. Journal of Petroleum Technology, 2012, 64(3): 118-127.
[5] BAI B, ELGMATI M, ZHANG H, et al.Rock characterization of Fayetteville shale gas plays[J]. Fuel, 2013, 105: 645-652.
[6] WANG Y, MISKIMINS J.Experimental investigations of hydraulic fracture growth complexity in slickwater fracturing treatments[J]. Environmental Science & Technology, 2010, 49(14): 8777-8785.
[7] GUO Tiankui, ZHANG Shicheng, QU Zhanqing, et al.Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014, 128: 373-380.
[8] QIAN Bin, ZHANG Juncheng, ZHU Juhui, et al.Application of zipper-fracturing of horizontal cluster wells in the Changning shale gas pilot zone, Sichuan Basin[J]. Natural Gas Industry B, 2015, 2(2/3): 181-184.
[9] DAYAN A, STRACENER S M, CLARK P E.Proppant transport in slickwater fracturing of shale gas formations[J]. Journal of Petroleum Technology, 2009, 62(10): 56-59.
[10] PALISCH T T, VINCENT M, HANDREN P J.Slickwater fracturing: Food for thought[J]. SPE Production & Operations, 2010, 25(3): 327-344.
[11] KOSTENUK N H, BROWNE D J.Improved proppant transport system for slickwater shale fracturing[R]. SPE 137818-MS, 2010.
[12] 吴雷泽, 薛苗, 鲁红升. 礁石坝区块页岩气压裂用滑溜水体系研究[J]. 钻采工艺, 2015, 38(6): 84-86.
WU Leize, XUE Miao, LU Hongsheng.The study of shale gas fracturing of slick-water system for Jiaoshiba block[J]. Drilling & Production Technology, 2015, 38(6): 84-86.
[13] ZHOU J, SUN H, STEVENS R F, et al.Bridging the gap between laboratory characterization and field applications of friction reducers[R]. SPE 140942-MS, 2011.
[14] SUN Yongpeng, WU Qihua, WEI Mingzhen, et al.Experimental study of friction reducer flows in microfractures[J]. Fuel, 2014, 131: 28-35.
[15] XU Chengyuan, KANG Yili, YOU Zhenjiang.Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1208-1219.
[16] ZHANG J, ANTON K, ZHU D, et al.Development of new testing procedures to measure propped fracture conductivity considering water damage in clay-rich shale reservoirs: An example of the Barnett Shale[J]. Journal of Petroleum Science and Engineering, 2015, 135: 352-359.
[17] WU Xiaohong, PU Hui, ZHU Kuangliang, et al.Formation damage mechanisms and protection technology for Nanpu nearshore tight gas reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 158: 509-515.
[18] GONG Honghong, LIU Mingzhu, CHEN Jiucun, et al.Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions[J]. Carbohydrate Polymers, 2012, 88(3): 1015-1022.
[19] SZOPINSKI D, KULICKE W M, LUINSTRA G A, et al.Structure-property relationships of carboxymethyl hydroxypropyl guar gum in water and a hyperentanglement parameter[J]. Carbohydrate Polymers, 2015, 119: 159-166.
[20] SUN Yongpeng, BAI Baojun, DAI Caili, et al.Permeability evolution study after breaking of friction reducer in near fracture matrix of tight gas reservoir[J]. Fuel, 2017, 204: 63-70.
[21] SONG Zhaojie, LIU Lingbo, WEI Mingzhen, et al.Effect of polymer on disproportionate permeability reduction to gas and water for fractured shales[J]. Fuel, 2015, 143: 28-37.
[22] HUANG Weian, LEI Ming, QIU Zhengsong, et al.Damage mechanism and protection measures of a coalbed methane reservoir in the Zhengzhuang block[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 683-694.
[23] BLANCHARD V, LASSEUX D, BERTIN H, et al.Gas/water flow in porous media in the presence of adsorbed polymer: Experimental study on non-Darcy effects[R]. SPE 99711, 2006.
[24] GRATTONI C A, LUCKHAM P F, JING X D, et al.Polymers as relative permeability modifiers: Adsorption and the dynamic formation of thick polyacrylamide layers[J]. Journal of Petroleum Science and Engineering, 2012, 45(3/4): 233-245.
[25] 张红光, 杨秦敏, 卢建刚. 基于近红外光谱和最小二乘支持向量机的聚丙烯酰胺类型鉴别[J]. 光谱学与光谱分析, 2014, 34(4): 972-976.
ZHANG Hongguang, YANG Qinmin, LU Jiangang.Discrimination of types of polyacrylamide based on near infrared spectroscopy coupled with least square support vector machine[J]. Spectroscopy and Spectral Analysis, 2014, 34(4): 972-976.
[26] CHEN Yanyan, 徐祖新. 基于溴化钾红外光谱和显微红外光谱的页岩储层定量表征[J]. 油气地球物理, 2014, 12(4): 59-66.
CHEN Yanyan, XU Zuxin.Quantitative characterization of shale components based on infrared spectra and infrared spectra of potassium bromide[J]. Petroleum Geophysics, 2014, 12(4): 59-66.
[27] 吕凯, 戴彩丽, 张若然, 等. 疏水缔合聚合物在地层多孔介质吸附特性研究[J]. 油田化学, 2010, 27(4): 391-394.
LYU Kai, DAI Caili, ZHANG Ruoran, et al.Study on adsorption characteristics of hydrophobically associating polymers in formation porous media[J]. Oilfield Chemistry, 2010, 27(4): 391-394.
[28] 肖庆华, 孙晗森, 杨宇, 等. 聚丙烯酰胺在煤粉上的吸附性能[J]. 钻井液与完井液, 2013, 30(4): 46-48.
XIAO Qinghua, SUN Hansen, YANG Yu, et al.Adsorption properties of polyacrylamide on pulverized coal[J]. Drilling Fluid & Completion Fluid, 2013, 30(4): 46-48.
[29] WIŚNIEWSKA M, CHIBOWSKI S, URBAN T. Modification of the alumina surface properties by adsorbed anionic polyacrylamide: Impact of polymer hydrolysis[J]. Journal of Industrial & Engineering Chemistry, 2014, 21(1): 925-931.
[30] PARK H, HAN J, SUNG W.Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs[J]. Energy, 2015, 84: 666-671.
[31] WIŚNIEWSKA M, CHIBOWSKI S, URBAN T. Adsorption properties of the nanozirconia/anionic polyacrylamide system: Effects of surfactant presence, solution pH and polymer carboxyl groups content[J]. Applied Surface Science, 2016, 370: 351-356.
[32] KUTSEVOL N, NAUMENKO A, CHUMACHENKO V, et al.Flocculative ability of uncharged and hydrolyzed graft and linear polyacrylamides[J]. Journal of Molecular Liquids, 2016, 227: 26-30.
[33] KOHLER T, HINZE M, MÜLLER K, et al. Temperature independent description of water adsorption on zeotypes showing a type V adsorption isotherm[J]. Energy, 2017, 135: 227-236.
[34] CIMINO R T, RASMUSSEN C J, BRUN Y, et al.Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography[J]. Journal of Colloid & Interface Science, 2016, 481: 181-193.
[35] SOMASUNDARAN P, WANG J, NAGARAJ D R.Adsorption and conformation of polysaccharide depressants on minerals[J]. Korean Journal of Internal Medicine, 2005, 9(1): 20-24.