PETROLEUM ENGINEERING

The “fracture-controlled reserves” based stimulation technology for unconventional oil and gas reservoirs

  • LEI Qun ,
  • YANG Lifeng ,
  • DUAN Yaoyao ,
  • WENG Dingwei ,
  • WANG Xin ,
  • GUAN Baoshan ,
  • WANG Zhen ,
  • GUO Ying
Expand
  • 1. CNPC Key Laboratory of Oil & Gas Reservoir Stimulation, Langfang 065007, China;
    2. PetroChina Research Institute of Petroleum Exploration & Development, Langfang 065007, China;

Received date: 2018-03-21

  Revised date: 2018-04-18

  Online published: 2018-05-28

Abstract

To solve the problems facing the economic development of unconventional oil and gas, a new concept and corresponding technology system of reservoir stimulation based on “fracture-controlled reserves” are put forward. The “fracture-controlled reserves” stimulation technology is to realize the three-dimensional producing and economic and efficient development of unconventional hydrocarbon resources by forming a fracture system that well matches “sweet spots” and “non-sweet spots”. The technical route of the stimulation technology is “three optimizations and controls”, that is, control the scope of sand body through optimizing well spacing, control the recoverable reserves through optimizing fracture system, and control the single well production reduction through optimizing energy complement method. The “fracture-controlled reserves” stimulation emphasizes the maximization of the initial stimulation coefficient, the integration of energy replenishment, stimulation and production, and prolonging the re-fracturing cycle or avoiding re-fracturing. It aims at realizing the three-dimensional full producing and efficient development of reservoir in vertical and horizontal directions and achieving the large-scale, sustainable and high profitable development of unconventional oil and gas resources. The stimulation technology was used to perform 20 pilot projects in five typical tight-oil, shale gas blocks in China. The fracturing and producing effects of tight oil improved and the commercial development for shale gas was realized.

Cite this article

LEI Qun , YANG Lifeng , DUAN Yaoyao , WENG Dingwei , WANG Xin , GUAN Baoshan , WANG Zhen , GUO Ying . The “fracture-controlled reserves” based stimulation technology for unconventional oil and gas reservoirs[J]. Petroleum Exploration and Development, 2018 , 45(4) : 719 -726 . DOI: 10.11698/PED.2018.04.18

References

[1] 邹才能, 丁云宏, 卢拥军, 等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154.
ZOU Caineng, DING Yunhong, LU Yongjun, et al.Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154.
[2] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng.Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
[3] 赵政璋, 杜金虎. 致密油气[M]. 北京: 石油工业出版社, 2012.
ZHAO Zhengzhang, DU Jinhu.Tight oil and gas[M]. Beijing: Petroleum Industry Press, 2012.
[4] 吴奇, 胥云, 刘玉章, 等. 美国页岩气体积改造技术现状及对我国的启示[J]. 石油钻采工艺, 2011, 33(2): 1-7.
WU Qi, XU Yun, LIU Yuzhang, et al.The current situation of stimulated reservoir volume for shale in U.S. and its inspiration to China[J]. Oil Drilling & Production Technology, 2011, 33(2): 1-7.
[5] IWERE F O, HEIM R N, CHERIAN B V.Numerical simulation of enhanced oil recovery in the Middle Bakken and Upper Three Forks tight oil reservoirs of the Williston Basin[R]. SPE 154937, 2012.
[6] 吴奇, 胥云, 王晓泉, 等. 非常规油气藏体积改造技术: 内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352-358.
WU Qi, XU Yun, WANG Xiaoquan, et al.Volume fracturing technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352-358.
[7] 吴奇, 胥云, 张守良, 等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706-714.
WU Qi, XU Yun, ZHANG Shouliang, et al.The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706-714.
[8] 吴奇, 胥云, 王腾飞, 等. 增产改造理念的重大变革: 体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7-12.
WU Qi, XU Yun, WANG Tengfei, et al.The revolution of reservoir stimulation: An introduction of volume fracturing[J]. Natural Gas Industry, 2011, 31(4): 7-12.
[9] 刘乃震, 王国勇. 四川盆地威远区块页岩气甜点厘定与精准导向钻井[J]. 石油勘探与开发, 2016, 43(6): 978-985.
LIU Naizhen, WANG Guoyong.Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(6): 978-985.
[10] 王永辉, 刘玉章, 丁云宏, 等. 页岩层理对压裂裂缝垂向扩展机制研究[J]. 钻采工艺, 2017, 40(5): 39-42.
WANG Yonghui, LIU Yuzhang, DING Yunhong, et al.Research on influence of shale bedding to vertical extension mechanism of hydraulic fracture[J]. Drilling & Production Technology, 2017, 40(5): 39-42.
[11] 冯曦, 钟兵, 刘义成, 等. 优化气井配产的多因素耦合分析方法及其应用[J]. 天然气工业, 2012, 32(1): 60-63.
FENG Xi, ZHONG Bing, LIU Yicheng, et al.Multi-factor coupling analysis of optimized gas-well production allocation[J]. Natural Gas Industry, 2012, 32(1): 60-63.
[12] 陈余, 付玉, 卞小强, 等. 非达西效应及范围对低渗透气藏井控储量的影响[J]. 油气井测试, 2017, 26(6): 14-17.
CHEN Yu, FU Yu, BIAN Xiaoqiang, et al.Influence to well-controlled reserves in low permeability gas reservoir of non-Darcy flow effect and its scope[J]. Well Testing, 2017, 26(6): 14-17.
[13] 黄全华, 方涛. 低渗透产水气藏单井控制储量的计算及产水对储量的影响[J]. 天然气工业, 2013, 33(3): 33-36.
HUANG Quanhua, FANG Tao.Single well controlled reserves calculation for low permeability water-producing gas reservoirs and implications of the involvement of water production[J]. Natural Gas Industry, 2013, 33(3): 33-36.
[14] 王富平, 黄全华, 王东旭, 等. 渗透率对低渗气藏单井控制储量的影响[J]. 断块油气田, 2008, 15(1): 45-47.
WANG Fuping, HUANG Quanhua, WANG Dongxu, et al.Influence of permeability on single well controlling reserves in low permeability gas reservoir[J]. Fault-Block Oil & Gas Field, 2008, 15(1): 45-47.
[15] FAKCHAROENPHOL P, CHAROENWONGSA S, KAZEMI H, et al.The effect of water induced stress to enhance hydrocarbon recovery in shale reservoirs[R]. SPE 158053, 2012.
[16] WAN T, JAMES J, SHENG M Y.Evaluation EOR potential in fractured shale oil recovery by cyclic gas injection[R]. SPE 168880, 2013.
[17] CHEDAN S.Global laboratory experience of CO2-EOR flooding[R]. SPE 125581, 2009.
[18] 蒲秀刚, 周立宏, 韩文中, 等. 细粒相沉积地质特征与致密油勘探: 以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油勘探与开发, 2016, 43(1): 24-33.
PU Xiugang, ZHOU Lihong, HAN Wenzhong, et al.Geologic features of fine-grained facies sedimentation and tight oil exploration: A case from the second Member of Paleogene Kongdian Formation of Cangdong sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(1): 24-33.
[19] DONG Zhenzhen, HOLDITCH S, MCVAY D, et al.Probabilistic assessment of world recoverable shale-gas resources[R]. SPE 167768, 2015.
[20] MOHAGHEGH S D, GASKARI R, MAYSAMI M.Shale analytics: Making production and operational decisions based on facts: A case study in Marcellus Shale[R]. SPE 184822, 2017.
[21] CAO R, LI Ruijian, GIRARDI A, et al.Well interference and optimum well spacing for Wolfcamp development at Permian Basin[R]. URTEC 2691962, 2017.
[22] PAUL W, LARRY G, PEARSON C M.Mining the Bakken II: Pushing the envelope with extreme limited entry perforating[R]. SPE 189880, 2018.
[23] KIRAN S, JAMES B, ALAN R.Extreme limited entry design improves distribution efficiency in plug-n-perf completions: Insights from fiber-optic diagnostics[R]. SPE 184834, 2017.
[24] PAUL W, LARRY G, PEARSON C M.Mining the Bakken: Driving cluster efficiency higher using particulate diverters[R]. SPE 184828, 2017.
Outlines

/