PETROLEUM ENGINEERING

Potential application of functional micro-nano structures in petroleum

  • LIU He ,
  • JIN Xu ,
  • ZHOU Dekai ,
  • YANG Qinghai ,
  • LI Longqiu
Expand
  • 1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    2. China National Oil and Gas Exploration and Development Company Ltd., Beijing 100083, China;
    3. Harbin Institute of Technology, Harbin 150001, China

Received date: 2018-04-25

  Revised date: 2018-05-22

  Online published: 2018-06-13

Abstract

This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into motor type (e.g. micro-nano motors) and fixed type (e.g. metamaterials), and 3D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions: (1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment. (2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources. (3) The intelligent structure manufacturing technology represented by 3D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining.

Cite this article

LIU He , JIN Xu , ZHOU Dekai , YANG Qinghai , LI Longqiu . Potential application of functional micro-nano structures in petroleum[J]. Petroleum Exploration and Development, 2018 , 45(4) : 698 -704 . DOI: 10.11698/PED.2018.04.15

References

[1] 刘合. 中国致密油工程技术面临的挑战与对策[J]. 世界石油工业, 2016(5): 15-18.
LIU He.Challenges and countermeasures for tight oil engineering technology in China[J]. World Petroleum Industry, 2016(5): 15-18.
[2] 杨金川. 浅谈聚合物驱采油技术[J]. 中国化工贸易, 2017, 9(19): 72.
YANG Jinchuan.Discussion on the technology of polymer flooding[J]. China Chemical Trade, 2017, 9(19): 72.
[3] 韩涛, 张倩, 金玉俊, 等. 深井采油工艺配套技术研究[J]. 石油化工应用, 2009, 28(7): 46-49.
HAN Tao, ZHANG Qian, JIN Yujun, et al.Technological research of deep lifting of wells[J]. Petrochemical Industry Application, 2009, 28(7): 46-49.
[4] 张大刚. 深海油田的开发: 当前国际应用及发展趋势[J]. 中国造船, 2005, 46(4): 41-46.
ZHANG Dagang.Deepwater oilfield development: Current international practice and trend[J]. Shipbuilding of China, 2005, 46(4): 41-46.
[5] 王志松. 能干的小引擎: 纳米马达[J]. 自然杂志, 2006, 28(3): 160-163.
WANG Zhisong.A little engine that could: An introduction to nano-motors[J]. Chinese Journal of Nature, 2006, 28(3): 160-163.
[6] CHANG X C, LI T L, ZHOU D K, et al.Propulsion mechanisms and applications of multiphysics-driven micro- and nanomotors[J]. Chinese Science Bulletin, 2017, 62(2/3): 122-135.
[7] WANG L, LI L Q, LI T L, et al.Locomotion of chemically powered autonomous nanowire motors[J]. Applied Physics Letters, 2015, 107(6): 063102.
[8] SOLOVEV A A, SAMUEL S, MARTIN P, et al.Nanomotors: Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects[J]. Advanced Functional Materials, 2010, 20(15): 2430-2435.
[9] LI J X, LIU Z Q, HUANG G S, et al.Hierarchical nanoporous microtubes for high-speed catalytic microengines[J]. NPG Asia Materials, 2014, 6(4): 1-5.
[10] CHANG X C, LI L Q, LI T L, et al.Accelerated microrockets with a biomimetic hydrophobic surface[J]. RSC Advances, 2016, 6(90): 87213-87220.
[11] WU Z G, LI J X, LI T, et al.Water-powered cell-mimicking janus micromotor[J]. Advanced Functional Materials, 2016, 25(48): 7497-7501.
[12] LI Y, MOU F Z, CHEN C R, et al.Light-controlled bubble propulsion of amorphous TiO2/Au janus micromotors[J]. RSC Advances, 2016, 6(13): 10697-10703.
[13] MOU F Z, LI Y, CHEN C R, et al.Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles[J]. Small, 2015, 11(21): 2564-2570.
[14] LI L Q, WANG J Y, LI T L, et al.Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: Model and experiment[J]. Soft Matter, 2014, 10(38): 7511-7518.
[15] WU Z G, SI T Y, GAO W, et al.Superfast near-infrared light-driven polymer multilayer rockets[J]. Small, 2015, 12(5): 577-582.
[16] XUAN M J, WU Z G, SHAO J X, et al.Near infrared light-powered janus mesoporous silica nanoparticle motors[J]. Journal of the American Chemical Society, 2016, 138(20): 6492-6497.
[17] LI T L, LI J X, ZHANG H T, et al.Magnetically propelled fish-like nanoswimmers[J]. Small, 2016, 12(44): 6098-6105.
[18] WANG W, LI S X, LAMAR M, et al.Acoustic propulsion of nanorod motors inside living cells[J]. Angewandte Chemie, 2014, 53(12): 3201-3204.
[19] WU Z G, LI T L, LI J X, et al.Turning erythrocytes into functional micromotors[J]. ACS Nano, 2014, 8(12): 12041-12048.
[20] LI J X, LI T L, XU T L, et al.Magneto-acoustic hybrid nanomotor[J]. Nano Letters, 2015, 15(7): 4814-4821.
[21] WANG W, DUAN W T, ZHANG Z X, et al.A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors[J]. Chemical Communications, 2015, 51(6): 1020-1023.
[22] XU T L, SOTO F, GAO W, et al.Ultrasound-modulated bubble propulsion of chemically powered microengines[J]. Journal of the American Chemical Society, 2014, 136(24): 8552-8555.
[23] SOLER L, SANCHEZ S.Catalytic nanomotors for environmental monitoring and water remediation[J]. Nanoscale, 2014, 6(13): 7175-7182.
[24] PORTO J A, GARCIA-VIDAL F J, PENDRY J B. Transmission resonances on metallic gratings with very narrow slits[J]. Physical Review Letters, 1999, 83(14): 2845-2848.
[25] SCHURIG D, MOCK J J, JUSTICE B J, et al.Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.
[26] SHEN X, YANG Y, ZANG Y, et al.Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation[J]. Applied Physics Letters, 2012, 101(15): 154102.
[27] LIU X, TYLER T, STARR T, et al.Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 2011, 107(4): 045901.
[28] ZHANG L, LIU S, CUI T J.Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12.
[29] SUN S, YANG K Y, WANG C M, et al.High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.
[30] FANG N, LEE H, SUN C, et al.Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.
[31] VERSLEGERS L, CATRYSSE P B, YU Z, et al.Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238.
[32] HUANG Y W, CHEN W T, TSAI W Y, et al.Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127.
[33] PENDRY J.Photonics: Metamaterials in the sunshine[J]. Nature Materials, 2006, 5(8): 599-600.
[34] 沈翔瀛, 黄吉平. 热超构材料的研究进展[J]. 物理, 2013, 42(3): 170-180.
SHEN Xiangying, HUANG Jiping.Research progress in thermal metamaterials[J]. Physics, 2013, 42(3): 170-180.
[35] 沈翔瀛, 黄吉平. 变换热学:热超构材料及其应用[J]. 物理学报, 2016, 65(17): 99-125.
SHEN Xiangying, HUANG Jiping.Transformation thermotics: Thermal metamaterials and their applications[J]. Acta Physica Sinica, 2016, 65(17): 99-125.
[36] FAN C Z, GAO Y, HUANG J P.Shaped graded materials with an apparent negative thermal conductivity[J]. Applied Physics Letters, 2008, 92(25): 1780.
[37] HAN T, BAI X, GAO D, et al.Experimental demonstration of a bilayer thermal cloak[J]. Physical Review Letters, 2014, 112(5): 054302.
[38] MA Y, LIU Y, RAZA M, et al.Experimental demonstration of a multiphysics cloak: Manipulating heat flux and electric current simultaneously[J]. Physical Review Letters, 2014, 113(20): 205501.
[39] LI Y, SHEN X, WU Z, et al.Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503.
[40] GUENNEAU S, AMRA C, VEYNANTE D.Transformation thermodynamics: Cloaking and concentrating heat flux[J]. Optics Express, 2012, 20(7): 8207.
[41] NARAYANA S, SATO Y.Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303.
[42] HAN T, ZHAO J, YUAN T, et al.Theoretical realization of an ultra- efficient thermal-energy harvesting cell made of natural materials[J]. Energy & Environmental Science, 2013, 6(12): 3537-3541.
[43] LAN C, LI B, ZHOU J.Simultaneously concentrated electric and thermal fields using fan-shaped structure[J]. Optics Express, 2015, 23(19): 24475-24483.
[44] SHENG P, ZHANG X X, LIU Z, et al.Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[45] ZHANG S, XIA C, FANG N.Broadband acoustic cloak for ultrasound waves[J]. Physical Review Letters, 2010, 106(2): 024301.
[46] ZHU J, CHRISTENSEN J, JUNG J, et al.A holey-structured metamaterial for acoustic deep-subwavelength imaging[J]. Nature Physics, 2011, 7(1): 52-55.
[47] XIE Y, WANG W, CHEN H, et al.Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature Communications, 2014(5): 5553.
[48] LIANG B, GUO X S, TU J, et al.An acoustic rectifier[J]. Nature Materials, 2010, 9(12): 989-992.
[49] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.
LU Bingheng, LI Dichen.Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.
[50] 兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印[J]. 中国科学: 技术科学, 2015 (9): 919-940.
LAN Hongbo, LI Dichen, LU Bingheng.Micro-and nanoscale 3D printing[J]. SCIENTIA SINICA Technologica, 2015 (9): 919-940.
[51] 李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129-135.
LI Dichen, HE Jiankang, TIAN Xiaoyong, et al.Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135.
[52] ZHENG X, LEE H, WEISGRABER T H, et al.Ultralight, ultrastiff mechanical metmaterials[J]. Science, 2014, 344(6190): 1373-1377.
[53] FRENZEL T, KADIC M, WEGENER M.Three-dimensional mechanical metmaterials with a twist[J]. Science, 2017, 358(6366): 1072.
[54] HUANG T Y, SAKAR M S, MAO A, et al.3D printed microtransporters: Compound micromachines for spatiotemporally controlled delivery of therapeutic agents[J]. Advanced Materials, 2015, 27(42): 6644-6650.
[55] RICHTER B, HAHN V, BERTELS S, et al.Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins[J]. Advanced Materials, 2017, 29(5): 1604342.
[56] MACDONALD E, SALAS R, ESPALIN D, et al.3D Printing for the rapid prototyping of structural electronics[J]. IEEE Access, 2014, 2: 234-242.
[57] XU H, MEDINASÁNCHEZ M, MAGDANZ V, et al. Sperm-hybrid micromotor for targeted drug delivery[J]. ACS Nano, 2017, 12(1): 327-337.
[58] GISSIBL T, THIELE S, HERKOMMER A, et al.Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 2016, 10(8): 554-560.
[59] MUTH J T, VOGT D M, TRUBY R L, et al.3D printing: Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials, 2014, 26(36): 6307-6312.
[60] QI G, SAKHAEI A H, LEE H, et al.Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, 6: 31110.
[61] WANG Q, JACKSON J A, GE Q, et al.Lightweight mechanical metamaterials with tunable negative thermal expansion[J]. Physical Review Letters, 2016, 117(17): 175901.
[62] MAO L, GAO H, YU S, et al.Synthetic nacre by predesigned matrix- directed mineralization[J]. Science, 2016, 354(6308): 107-110.
[63] JIN X, ZHANG X, PENG Y, et al.Multifunctional engineering aluminum surfaces for self-propelled anti-condensation[J]. Advanced Engineering Materials, 2015, 17(7): 961-968.
[64] JIN X, SHI B, ZHENG L, et al.Bio-inspired multifunctional metallic foams through the fusion of different biological solutions[J]. Advanced Functional Materials, 2014, 24(18): 2721-2726.
[65] 刘合, 金旭, 丁彬. 纳米技术在石油勘探开发领域的应用[J]. 石油勘探与开发, 2016, 43(6): 1014-1021.
LIU He, JIN Xu, DING Bin.Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6): 1014-1021.
Outlines

/