[1] 刘合. 中国致密油工程技术面临的挑战与对策[J]. 世界石油工业, 2016(5): 15-18.
LIU He.Challenges and countermeasures for tight oil engineering technology in China[J]. World Petroleum Industry, 2016(5): 15-18.
[2] 杨金川. 浅谈聚合物驱采油技术[J]. 中国化工贸易, 2017, 9(19): 72.
YANG Jinchuan.Discussion on the technology of polymer flooding[J]. China Chemical Trade, 2017, 9(19): 72.
[3] 韩涛, 张倩, 金玉俊, 等. 深井采油工艺配套技术研究[J]. 石油化工应用, 2009, 28(7): 46-49.
HAN Tao, ZHANG Qian, JIN Yujun, et al.Technological research of deep lifting of wells[J]. Petrochemical Industry Application, 2009, 28(7): 46-49.
[4] 张大刚. 深海油田的开发: 当前国际应用及发展趋势[J]. 中国造船, 2005, 46(4): 41-46.
ZHANG Dagang.Deepwater oilfield development: Current international practice and trend[J]. Shipbuilding of China, 2005, 46(4): 41-46.
[5] 王志松. 能干的小引擎: 纳米马达[J]. 自然杂志, 2006, 28(3): 160-163.
WANG Zhisong.A little engine that could: An introduction to nano-motors[J]. Chinese Journal of Nature, 2006, 28(3): 160-163.
[6] CHANG X C, LI T L, ZHOU D K, et al.Propulsion mechanisms and applications of multiphysics-driven micro- and nanomotors[J]. Chinese Science Bulletin, 2017, 62(2/3): 122-135.
[7] WANG L, LI L Q, LI T L, et al.Locomotion of chemically powered autonomous nanowire motors[J]. Applied Physics Letters, 2015, 107(6): 063102.
[8] SOLOVEV A A, SAMUEL S, MARTIN P, et al.Nanomotors: Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects[J]. Advanced Functional Materials, 2010, 20(15): 2430-2435.
[9] LI J X, LIU Z Q, HUANG G S, et al.Hierarchical nanoporous microtubes for high-speed catalytic microengines[J]. NPG Asia Materials, 2014, 6(4): 1-5.
[10] CHANG X C, LI L Q, LI T L, et al.Accelerated microrockets with a biomimetic hydrophobic surface[J]. RSC Advances, 2016, 6(90): 87213-87220.
[11] WU Z G, LI J X, LI T, et al.Water-powered cell-mimicking janus micromotor[J]. Advanced Functional Materials, 2016, 25(48): 7497-7501.
[12] LI Y, MOU F Z, CHEN C R, et al.Light-controlled bubble propulsion of amorphous TiO2/Au janus micromotors[J]. RSC Advances, 2016, 6(13): 10697-10703.
[13] MOU F Z, LI Y, CHEN C R, et al.Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles[J]. Small, 2015, 11(21): 2564-2570.
[14] LI L Q, WANG J Y, LI T L, et al.Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: Model and experiment[J]. Soft Matter, 2014, 10(38): 7511-7518.
[15] WU Z G, SI T Y, GAO W, et al.Superfast near-infrared light-driven polymer multilayer rockets[J]. Small, 2015, 12(5): 577-582.
[16] XUAN M J, WU Z G, SHAO J X, et al.Near infrared light-powered janus mesoporous silica nanoparticle motors[J]. Journal of the American Chemical Society, 2016, 138(20): 6492-6497.
[17] LI T L, LI J X, ZHANG H T, et al.Magnetically propelled fish-like nanoswimmers[J]. Small, 2016, 12(44): 6098-6105.
[18] WANG W, LI S X, LAMAR M, et al.Acoustic propulsion of nanorod motors inside living cells[J]. Angewandte Chemie, 2014, 53(12): 3201-3204.
[19] WU Z G, LI T L, LI J X, et al.Turning erythrocytes into functional micromotors[J]. ACS Nano, 2014, 8(12): 12041-12048.
[20] LI J X, LI T L, XU T L, et al.Magneto-acoustic hybrid nanomotor[J]. Nano Letters, 2015, 15(7): 4814-4821.
[21] WANG W, DUAN W T, ZHANG Z X, et al.A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors[J]. Chemical Communications, 2015, 51(6): 1020-1023.
[22] XU T L, SOTO F, GAO W, et al.Ultrasound-modulated bubble propulsion of chemically powered microengines[J]. Journal of the American Chemical Society, 2014, 136(24): 8552-8555.
[23] SOLER L, SANCHEZ S.Catalytic nanomotors for environmental monitoring and water remediation[J]. Nanoscale, 2014, 6(13): 7175-7182.
[24] PORTO J A, GARCIA-VIDAL F J, PENDRY J B. Transmission resonances on metallic gratings with very narrow slits[J]. Physical Review Letters, 1999, 83(14): 2845-2848.
[25] SCHURIG D, MOCK J J, JUSTICE B J, et al.Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.
[26] SHEN X, YANG Y, ZANG Y, et al.Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation[J]. Applied Physics Letters, 2012, 101(15): 154102.
[27] LIU X, TYLER T, STARR T, et al.Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 2011, 107(4): 045901.
[28] ZHANG L, LIU S, CUI T J.Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12.
[29] SUN S, YANG K Y, WANG C M, et al.High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229.
[30] FANG N, LEE H, SUN C, et al.Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.
[31] VERSLEGERS L, CATRYSSE P B, YU Z, et al.Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238.
[32] HUANG Y W, CHEN W T, TSAI W Y, et al.Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127.
[33] PENDRY J.Photonics: Metamaterials in the sunshine[J]. Nature Materials, 2006, 5(8): 599-600.
[34] 沈翔瀛, 黄吉平. 热超构材料的研究进展[J]. 物理, 2013, 42(3): 170-180.
SHEN Xiangying, HUANG Jiping.Research progress in thermal metamaterials[J]. Physics, 2013, 42(3): 170-180.
[35] 沈翔瀛, 黄吉平. 变换热学:热超构材料及其应用[J]. 物理学报, 2016, 65(17): 99-125.
SHEN Xiangying, HUANG Jiping.Transformation thermotics: Thermal metamaterials and their applications[J]. Acta Physica Sinica, 2016, 65(17): 99-125.
[36] FAN C Z, GAO Y, HUANG J P.Shaped graded materials with an apparent negative thermal conductivity[J]. Applied Physics Letters, 2008, 92(25): 1780.
[37] HAN T, BAI X, GAO D, et al.Experimental demonstration of a bilayer thermal cloak[J]. Physical Review Letters, 2014, 112(5): 054302.
[38] MA Y, LIU Y, RAZA M, et al.Experimental demonstration of a multiphysics cloak: Manipulating heat flux and electric current simultaneously[J]. Physical Review Letters, 2014, 113(20): 205501.
[39] LI Y, SHEN X, WU Z, et al.Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503.
[40] GUENNEAU S, AMRA C, VEYNANTE D.Transformation thermodynamics: Cloaking and concentrating heat flux[J]. Optics Express, 2012, 20(7): 8207.
[41] NARAYANA S, SATO Y.Heat flux manipulation with engineered thermal materials[J]. Physical Review Letters, 2012, 108(21): 214303.
[42] HAN T, ZHAO J, YUAN T, et al.Theoretical realization of an ultra- efficient thermal-energy harvesting cell made of natural materials[J]. Energy & Environmental Science, 2013, 6(12): 3537-3541.
[43] LAN C, LI B, ZHOU J.Simultaneously concentrated electric and thermal fields using fan-shaped structure[J]. Optics Express, 2015, 23(19): 24475-24483.
[44] SHENG P, ZHANG X X, LIU Z, et al.Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[45] ZHANG S, XIA C, FANG N.Broadband acoustic cloak for ultrasound waves[J]. Physical Review Letters, 2010, 106(2): 024301.
[46] ZHU J, CHRISTENSEN J, JUNG J, et al.A holey-structured metamaterial for acoustic deep-subwavelength imaging[J]. Nature Physics, 2011, 7(1): 52-55.
[47] XIE Y, WANG W, CHEN H, et al.Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface[J]. Nature Communications, 2014(5): 5553.
[48] LIANG B, GUO X S, TU J, et al.An acoustic rectifier[J]. Nature Materials, 2010, 9(12): 989-992.
[49] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.
LU Bingheng, LI Dichen.Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.
[50] 兰红波, 李涤尘, 卢秉恒. 微纳尺度3D打印[J]. 中国科学: 技术科学, 2015 (9): 919-940.
LAN Hongbo, LI Dichen, LU Bingheng.Micro-and nanoscale 3D printing[J]. SCIENTIA SINICA Technologica, 2015 (9): 919-940.
[51] 李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6): 129-135.
LI Dichen, HE Jiankang, TIAN Xiaoyong, et al.Additive manufacturing: Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135.
[52] ZHENG X, LEE H, WEISGRABER T H, et al.Ultralight, ultrastiff mechanical metmaterials[J]. Science, 2014, 344(6190): 1373-1377.
[53] FRENZEL T, KADIC M, WEGENER M.Three-dimensional mechanical metmaterials with a twist[J]. Science, 2017, 358(6366): 1072.
[54] HUANG T Y, SAKAR M S, MAO A, et al.3D printed microtransporters: Compound micromachines for spatiotemporally controlled delivery of therapeutic agents[J]. Advanced Materials, 2015, 27(42): 6644-6650.
[55] RICHTER B, HAHN V, BERTELS S, et al.Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins[J]. Advanced Materials, 2017, 29(5): 1604342.
[56] MACDONALD E, SALAS R, ESPALIN D, et al.3D Printing for the rapid prototyping of structural electronics[J]. IEEE Access, 2014, 2: 234-242.
[57] XU H, MEDINASÁNCHEZ M, MAGDANZ V, et al. Sperm-hybrid micromotor for targeted drug delivery[J]. ACS Nano, 2017, 12(1): 327-337.
[58] GISSIBL T, THIELE S, HERKOMMER A, et al.Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 2016, 10(8): 554-560.
[59] MUTH J T, VOGT D M, TRUBY R L, et al.3D printing: Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials, 2014, 26(36): 6307-6312.
[60] QI G, SAKHAEI A H, LEE H, et al.Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, 6: 31110.
[61] WANG Q, JACKSON J A, GE Q, et al.Lightweight mechanical metamaterials with tunable negative thermal expansion[J]. Physical Review Letters, 2016, 117(17): 175901.
[62] MAO L, GAO H, YU S, et al.Synthetic nacre by predesigned matrix- directed mineralization[J]. Science, 2016, 354(6308): 107-110.
[63] JIN X, ZHANG X, PENG Y, et al.Multifunctional engineering aluminum surfaces for self-propelled anti-condensation[J]. Advanced Engineering Materials, 2015, 17(7): 961-968.
[64] JIN X, SHI B, ZHENG L, et al.Bio-inspired multifunctional metallic foams through the fusion of different biological solutions[J]. Advanced Functional Materials, 2014, 24(18): 2721-2726.
[65] 刘合, 金旭, 丁彬. 纳米技术在石油勘探开发领域的应用[J]. 石油勘探与开发, 2016, 43(6): 1014-1021.
LIU He, JIN Xu, DING Bin.Application of nanotechnology in petroleum exploration and development[J]. Petroleum Exploration and Development, 2016, 43(6): 1014-1021.