Petroleum Exploration and Development >
A method of monitoring gas saturation in carbon dioxide injection heavy oil reservoirs by pulsed neutron logging technology
Received date: 2021-01-25
Revised date: 2021-09-23
Online published: 2021-12-29
Supported by
National Natural Science Foundation of China(41974127);National Natural Science Foundation of China(41974155);China University of Petroleum (East China) Graduate Student Innovation Project Funding Project(YCX2020008)
A method is proposed to characterize the fast neutron scattering cross-section (σf) quantitatively by the combination of inelastic gamma rays and captured gamma rays, so as to realize the gas saturation evaluation of CO2-injected heavy oil reservoirs based on the three-detector pulsed neutron logging technology. Factors influencing of the evaluation effect of this method are analyzed and the effectiveness of this method is verified by a simulation example. By using the Monte Carlo simulation method and the physical model of bulk-volume rock, the relationship between σf and CO2 saturation is studied, and the saturation interpretation model is established. The influences of formation temperature and pressure, heavy oil density, borehole fluid and reservoir methane content on the evaluation results of CO2 saturation are analyzed. The results show that the characterization of σf by the combination of secondary gamma information can eliminate the influence of formation lithology, borehole fluid and methane content are the main factors affecting the quantitative monitoring of CO2 saturation, and the effects of formation temperature and pressure and heavy oil density are negligible. The simulation example verified the feasibility of the method for evaluating the CO2 saturation of CO2-injected heavy oil reservoirs.
Jilin FAN , Feng ZHANG , Lili TIAN , Qixuan LIANG , Xiaoyang ZHANG , Qunwei FANG , Baoping LU , Xianghui LI . A method of monitoring gas saturation in carbon dioxide injection heavy oil reservoirs by pulsed neutron logging technology[J]. Petroleum Exploration and Development, 2021 , 48(6) : 1420 -1429 . DOI: 10.1016/S1876-3804(21)60298-7
[1] | DE FIGUEIREDO M, BACANSKAS L, KOLIAN M. Greenhouse gas reporting for geologic sequestration of carbon dioxide. Orlando, Florida, USA: Carbon Management Technology Conference, 2012. |
[2] | LEYRIS J, JANSEN B O, FOLLUM O A, et al. Greenhouse gas emissions along the Norwegian gas value chain. SPE 190587-MS, 2018. |
[3] | HU Yongle, HAO Mingqiang, CHEN Guoli, et al. Technologies and practice of CO2 flooding and sequestration in China. Petroleum Exploration and Development, 2019, 46(4): 716-727. |
[4] | MATHIESON A, MIDGELY J, WRIGHT I, et al. In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia, 2011, 4: 3596-3603. |
[5] | FU K, RONGWONG W, LIANG Z, et al. Experimental analyses of mass transfer and heat transfer of post-combustion CO2 absorption using hybrid solvent MEA-MeOH in an absorber. Chemical Engineering Journal, 2015, 260: 11-19. |
[6] | CHEN S, LIU Y. DoReMi: A passive, geophysical monitoring technique for CO2 injection. SPE 149265-MS, 2011. |
[7] | KAZEMEINI S H, JUHLIN C, FOMEL S. Monitoring CO2 response on surface seismic data; a rock physics and seismic modeling feasibility study at the CO2 sequestration site, Ketzin, Germany. Journal of Applied Geophysics, 2010, 71(4): 109-124. |
[8] | LI H G, ZHANG X G, GUO H Z, et al. 4D seismic or CO2 in formation-fast neutron cross section: SPWLA 25th Formation Evaluation Symposium of Japan. Chiba, Japan: Society of Petrophysicists and Well-Log Analysts, 2019. |
[9] | IZGEC O, DEMIRAL B, BERTIN H J, et al. CO2 injection in carbonates. SPE 93773-MS, 2005. |
[10] | WITTERHOLT E J, TIXIER M R. Temperature logging in injection wells. SPE 4022-MS, 1972. |
[11] | HURTER S, GARNETT A A, BIELINSKI A, et al. Thermal signature of free-phase CO2 in porous rocks: Detectability of CO2 by temperature logging. SPE 109007-MS, 2007. |
[12] | RAEESI B, CEDILLO G, HAN X, et al. Expanding application of multi-detector pulsed neutron instrumentation for quantitative gas saturation monitoring in gas-filled boreholes: SPWLA 58th Annual Logging Symposium. Oklahoma City, Oklahoma, USA: Society of Petrophysicists and Well-Log Analysts, 2017. |
[13] | ZHANG F, LIU J, YUAN C. Monte Carlo simulation for determining gas saturation using three-detector pulsed neutron logging technology in tight gas reservoir and its application. Applied Radiation and Isotopes, 2013, 78: 51-56. |
[14] | MURRAY D R, YANG X W, HORIE T, et al. CO2 sequestration monitoring in a low salinity reservoir. SPE 130773-MS, 2010. |
[15] | MÜLLER N, RAMAKRISHNAN T S, BOYD A, et al. Time-lapse carbon dioxide monitoring with pulsed neutron logging. International Journal of Greenhouse Gas Control, 2007, 1(4): 456-472. |
[16] | ARYANI A, MOHAMED F, OBEIDI A, et al. Pulsed neutron monitoring of the first CO2 EOR pilot in the Middle East. SPE 141490-MS, 2011. |
[17] | ZHANG F, ZHANG Q, TIAN L, et al. Monitoring CO2 saturation using three-detector PNC logging technique for CO2-EOR in heavy oil reservoir: SPWLA 60th Annual Logging Symposium. The Woodlands, Texas, USA: Society of Petrophysicists and Well-Log Analysts, 2019. |
[18] | ZHOU T, ROSE D, QUINLAN T, et al. Fast neutron cross-section measurement physics and applications: SPWLA 57th Annual Logging Symposium. Reykjavik, Iceland: Society of Petrophysicists and Well-Log Analysts, 2016. |
[19] | CHADWICK M B, OBLOŽINSKÝ P, HERMAN M, et al. ENDF/B-VII. 0: Next generation evaluated nuclear data library for nuclear science and technology. Nuclear Data Sheets, 2006, 107(12): 2931-3060. |
[20] | TITTLE C W. Theory of neutron logging I. Geophysics, 1961, 26(1): 27-39. |
[21] | ZHANG F, ZHANG Q, LIU J, et al. A method to describe inelastic gamma field distribution in neutron gamma density logging. Applied Radiation and Isotopes, 2017, 129: 189-195. |
[22] | ZHANG Quanying, ZHANG Feng, WANG Yuwei, et al. Dual-spacing hydrogen index correction method for neutron gamma density measuring in LWD. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(4): 78-84. |
[23] | Los Alamos National Laboratory. MCNP: A general Monte Carlo n-particle transport code, version 5. LA-UR-03-1987, 2003. |
[24] | MARRA R K, POETTMANN F H, THOMPSON R S. Density of crude oil saturated with CO2. SPE Reservoir Engineering, 1988, 3(3): 815-821. |
[25] | XI Changfeng, QI Zongyao, ZHANG Yunjun, et al. CO2 assisted steam flooding in late steam flooding in heavy oil reservoirs. Petroleum Exploration and Development, 2019, 46(6): 1169-1177. |
/
〈 |
|
〉 |