Feasibility study on the extension limit of hydraulically driven non-metallic completion screen string in ultra-short radius horizontal wells

Expand
  • 1. MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
    2. Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China

Received date: 2021-11-20

  Revised date: 2022-05-20

  Online published: 2022-05-26

Abstract

Sticking of the screen pipe is a serious technical problem in the completion of ultra-short radius horizontal well. To solve this problem, the completion technology of hydraulically driven completion string is proposed and the completion string composed of guiding tube, hydraulically driven pipe, and nonmetallic composite screen pipe from inside out is designed, support tools for it are developed, and a mechanical model coupling tubular string-hydraulic pressure is established on the basis of the Pascal Principle and Hydraulic Drive Principle. Based on the wellbore structure of an ultra-short radius horizontal well targeting deep coalbed methane, the extension limit of completion string with hydraulic driven technology is calculated by the calculation model and compared with the extension limit of completion string with conventional technology. The results show that under the same conditions, the extension length of completion string of ultra-short radius horizontal wells by hydraulic driven technology is 17 times longer than that by conventional technology. Orthogonal analysis of multiple factors by numerical simulation shows that the structure of the completion string and the friction between the non-metallic continuous screen pipe and the wellbore are the two main factors affecting the extension length limit of the completion string driven by hydraulic pressure. Two kinds of completion string structures for ultra-short radius horizontal wells run hydraulic driven technology under different conditions have been selected, with the maximum extension lengths of 381 m and 655 m, respectively. The research results can provide theoretical support for completion of ultra-short radius horizontal wells with non-metallic continuous composite screen pipe driven by hydraulic pressure.

Cite this article

BI Yansen, XIAN Baoan, SHI Xiaolei, GAO Deli . Feasibility study on the extension limit of hydraulically driven non-metallic completion screen string in ultra-short radius horizontal wells[J]. Petroleum Exploration and Development, 0 : 20220805 -20220805 . DOI: 10.11698/PED.20210828

References

[1] ABDEL-GHANY M A, SISO S, HASSAN A M, et al. New technology application, radial drilling Petrobel, first well in Egypt[R]. OMC 2011-163, 2011.
[2] DICKINSON W, DICKINSON R, HERRERA A, et al.Slim hole multiple radials drilled with coiled tubing[R]. SPE 23639-MS, 1992.
[3] DICKINSON W, DICKINSON R W.Horizontal radial drilling system[R]. SPE 13949-MS, 1985.
[4] CINELLI S D, KAMEL A H.Novel technique to drill horizontal laterals revitalizes aging field[R]. SPE 163405-MS, 2013.
[5] RAGAB A M, KAMEL A M.Radial drilling technique for improving well productivity in Petrobel-Egypt[R]. SPE 164773-MS, 2013.
[6] PATEL J K, SHAIKH A A.The influence of abrasive water jet machining parameters on various responses: A review[J]. International Journal of Mechanical Engineering and Robotics Research, 2015, 4(1): 383-403.
[7] 杨刚, 孟尚志, 李斌, 等. 深部煤层气T型井钻井技术[J]. 煤炭科学技术, 2018, 46(6): 189-194.
YANG Gang, MENG Shangzhi, LI Bin, et al.Drilling technology of T-shaped well in deep coalbed methane[J]. Coal Science and Technology, 2018, 46(6): 189-194.
[8] 郭永宾, 管申, 刘智勤, 等. 多分支超短半径钻井技术在我国海上油田的首次应用[J]. 中国海上油气, 2020, 32(5): 137-144.
GUO Yongbin, GUAN Shen, LIU Zhiqin, et al.First application of multi-lateral ultra-short radius drilling in China offshore oilfields[J]. China Offshore Oil and Gas, 2020, 32(5): 137-144.
[9] 张绍林, 孙强, 李涛, 等. 基于柔性钻具低成本超短半径老井侧钻技术[J]. 石油机械, 2017, 45(12): 18-22.
ZHANG Shaolin, SUN Qiang, LI Tao, et al.The low cost ultra-short radius sidetracking technology in produced wells based on flexible drill pipe[J]. China Petroleum Machinery, 2017, 45(12): 18-22.
[10] 赵海涛, 韩新宇. 超短半径水平井柔性钻具: CN201120114627.1[P].2011-11-23.
ZHAO Haitao, HAN Xinyu. Flexible drilling tool for ultra-short radius horizontal well: CN201120114627.1[P].2011-11-23.
[11] 管申, 郭浩, 程林, 等. WZ-X1井超短半径水平井轨迹控制技术研究及应用[J]. 钻采工艺, 2020, 43(6): 21-23, 27.
GUAN Shen, GUO Hao, CHENG Lin, et al.Research and application of trajectory control technology for ultra-short radius horizontal drilling in Well WZ-X1[J]. Drilling & Production Technology, 2020, 43(6): 21-23, 27.
[12] 王晶, 罗敏, 李巧珍, 等. 超短半径水平井导向筛管结构优化设计[J]. 机床与液压, 2020, 48(11): 62-65, 75.
WANG Jing, LUO Min, LI Qiaozhen, et al.Structural optimization design of ultra-short radius horizontal well guiding screen tube[J]. Machine Tool & Hydraulics, 2020, 48(11): 62-65, 75.
[13] 申瑞臣, 时文, 徐义, 等. 煤层气U型井PE筛管完井泵送方案[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 96-99, 104.
SHEN Ruichen, SHI Wen, XU Yi, et al.PE screen completion for U-shaped coal-bed methane wells with pumping method[J]. Journal of China University of Petroleum(Edition of Natural Science), 2012, 36(5): 96-99, 104.
[14] ZHAO Y Z, SHI Z J, HAO S J, et al.Well completion technology using screen pipe for horizontally-intersected well in soft coal seam[J]. Procedia Engineering, 2014, 73: 311-317.
[15] JOHANCSIK C A, FRIESEN D B, DAWSON R.Torque and drag in directional wells: Prediction and measurement[J]. Journal of Petroleum Technology, 1984, 36(6): 987-992.
[16] SHEPPARD M C, WICK C, BURGESS T.Designing well paths to reduce drag and torque[J]. SPE Drilling Engineering, 1987, 2(4): 344-350.
[17] HO H S.An improved modeling program for computing the torque and drag in directional and deep wells[R]. SPE 18047-MS, 1988.
[18] GAO D L, LIU F W, XU B Y.An analysis of helical buckling of long tubulars in horizontal wells[R]. SPE 50931-MS, 1998.
[19] GAO G H, MISKA S Z.Effects of boundary conditions and friction on static buckling of pipe in a horizontal well[R]. SPE 111511-MS, 2008.
[20] HUANG W J, GAO D L, LIU F W.Buckling analysis of tubular strings in horizontal wells[J]. SPE Journal, 2014, 20(2): 405-416.
[21] HUANG W J, GAO D L, LIU Y H.Inter-helical and intra-helical buckling analyses of tubular strings with connectors in horizontal wellbores[J]. Journal of Petroleum Science and Engineering, 2017, 152: 182-192.
[22] GUAN F, QIN H, AN C, et al.The helical buckling analysis of coiled tubing in offshore pipelines[J]. Ships and Offshore Structures, 2019, 14(2): 193-203.
[23] TONG S K, GAO D L.Elastic-plastic collapse limit analysis of coiled tubing under complex stress state[J]. Journal of Petroleum Science and Engineering, 2019, 174: 106-114.
[24] CAO Y P, PAN Y, MI H X, et al.Analysis of the running capacity of coiled tubing in three-dimensional curved borehole[J]. IOP Conference Series: Earth and Environmental Science, 2021, 804: 022014.
[25] YUE Q B, LIU J B, ZHANG L G, et al.The posting-buckling analysis and evaluations of limit drilling length for coiled tubing in the sidetrack horizontal well[J]. Journal of Petroleum Science and Engineering, 2018, 164: 559-570.
[26] 毕延森, 鲜保安, 高德利. 煤层气T型水平井柔性筛管泵送下入技术研究[J]. 煤炭科学技术, 2019, 47(11): 170-175.
BI Yansen, XIAN Baoan, GAO Deli.Study on technology of flexible screen running for T-shaped CBM wells with pumping method[J]. Coal Science and Technology, 2019, 47(11): 170-175.
[27] 鲜保安, 毕延森, 赵立朋, 等. 大曲率水平裸眼井筒柔性筛管下入装置及下入方法: CN201911044745.7[P].2019-12-13.
XIAN Baoan, BI Yansen, ZHAO Lipeng, et al. Large curvature horizontal open hole wellbore flexible screen pipe running device and running method: CN201911044745.7[P].2019-12-13.
[28] GUZ I A, MENSHYKOVA M, PAIK J K.Thick-walled composite tubes for offshore applications: An example of stress and failure analysis for filament-wound multi-layered pipes[J]. Ships and Offshore Structures, 2017, 12(3): 304-322.
[29] QIAO H D, ZHANG Y, BAI Y, et al.Study on reinforced thermoplastic pipe under combined tension and internal pressure[J]. Ships and Offshore Structures, 2018, 13(S1): 86-97.
[30] 国家能源局. 石油天然气工业用非金属复合管第6部分: 井下用柔性复合连续管及接头: SY/T 6662.6-2014[S]. 北京: 石油工业出版社, 2015.
National Energy Administration.Non-metallic composite pipes for petroleum and natural gas industries Part 6: Flexible coiled composite pipes and end fittings used in the well: SY/T 6662.6-2014[S]. Beijing: Petroleum Industry Press, 2015.
[31] COX K, MENSHYKOVA M, MENSHYKOV O, et al.Analysis of flexible composites for coiled tubing applications[J]. Composite Structures, 2019, 225: 111118.
[32] 高德利, 刘希圣, 徐秉业. 井眼轨迹控制[M]. 东营: 石油大学出版社, 1994.
GAO Deli, LIU Xisheng, XU Bingye.Prediction and control of wellbore trajectory[M]. Dongying: Petroleum University Press, 1994.
[33] GALLEGO F, SHAH S N.Friction pressure correlations for turbulent flow of drag reducing polymer solutions in straight and coiled tubing[J]. Journal of Petroleum Science and Engineering, 2009, 65(3/4): 147-161.
[34] 樊洪海. 实用钻井流体力学[M]. 北京: 石油工业出版社, 2014.
FAN Honghai.Practical drilling fluid mechanics[M]. Beijing: Petroleum Industry Press, 2014.
[35] WU J, JUVKAM-WOLD H C. The effect of wellbore curvature on tubular buckling and lockup[J]. Journal of Energy Resources Technology, 1995, 117(3): 214-218.
[36] WU J, JUVKAM-WOLD H C, LU R. Preventing helical buckling of pipes in extended reach and horizontal wells[R]. Houston: 1993 Energy-Sources Technology Conferences & Exhibition, 1993.
[37] WU J, JUVKAM-WOLD H C. Coiled tubing buckling implication in drilling and completing horizontal wells[J]. SPE Drilling & Completion, 1995, 10(1): 16-21.
[38] GIBSON A G.Composite materials in the offshore industry[J]. Reference Module in Materials Science and Materials Engineering, 1989: 459-478.
[39] 王力, 马卫国, 张芳. 复合连续管及其力学性能研究现状与发展[J]. 石油机械, 2021, 49(6): 123-131.
WANG Li, MA Weiguo, ZHANG Fang.Current status of research on composite coiled tubing and its mechanical properties[J]. China Petroleum Machinery, 2021, 49(6): 123-131.
Options
Outlines

/