Model-data-driven seismic AVO inversion method for small sample data

Expand
  • 1. CNOOC Shanghai Branch, Shanghai 200335;
    2. China University of Petroleum (Beijing), Beijing 102249;
    3. Karamay campus of China University of Petroleum (Beijing), Xinjiang 834000

Received date: 2022-02-16

  Revised date: 2022-07-15

  Online published: 2022-08-10

Abstract

As thin sandstone layers in thin interbedded section are difficult to identify, conventional model-driven seismic inversion and data-driven seismic methods have low precision in predicting them. To solve this problem, a model-data-driven seismic AVO (amplitude variation with offset) inversion method based on a space-variant objective function has been worked out. In this method, zero delay cross-correlation function and F norm are used to establish objective function; based on inverse distance weighting theory, change of the objective function is controlled according to the location of the target CDP (common depth point), to change the constraint weights of training samples, initial low-frequency models, and seismic data on the inversion. Hence, the proposed method can get high resolution and high-accuracy velocity and density from inversion of small sample data, and is suitable for identifying thin interbedded sand bodies. Tests with thin interbedded geological models show that the proposed method has high inversion accuracy and resolution for small sample data, and can identify sandstone and mudstone layers of about one-30th of the dominant wavelength thick. Tests on the field data of Lishui Sag show that the inversion results of the proposed method have small relative error with well-log data, and can identify thin sandstone layers of about one-15th of the dominant wavelength thick with small sample data.

Cite this article

LIU Jinshui, SUN Yuhang, LIU Yang . Model-data-driven seismic AVO inversion method for small sample data[J]. Petroleum Exploration and Development, 0 : 20221014 -20221014 . DOI: 10.11698/PED.20220119

References

[1] AKI K, RICHARDS P G.Quantitative seismology: Theory and methods[M]. San Francisco: W. H. Freeman, 1980: 144-154.
[2] ROBINSON E A.Predictive decomposition of time series with application to seismic exploration[J]. Geophysics, 1967, 32(3): 418-484.
[3] ALEMIE W, SACCHI M D.High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution[J]. Geophysics, 2011, 76(3): R43-R55.
[4] DOWNTON J E, LINES L R.Three term AVO waveform inversion[M]//Anon. SEG Technical Program Expanded Abstracts 2004. Houston: Society of Exploration Geophysicists, 2004: 215-218.
[5] HU G Q, LIU Y, WEI X C, et al.Joint PP and PS AVO inversion based on Bayes theorem[J]. Applied Geophysics, 2011, 8(4): 293-302.
[6] LI Y Q, LI J Y, CHEN X H, et al.Post-stack impedance blocky inversion based on analytic solution of viscous acoustic wave equation[J]. Geophysical Prospecting, 2020, 68(7): 2009-2026.
[7] SHI L, SUN Y H, LIU Y, et al.High-order AVO inversion for effective pore-fluid bulk modulus based on series reversion and Bayesian theory[J]. Energies, 2020, 13(6): 1313.
[8] HUANG G T, CHEN X H, LUO C, et al.Application of optimal transport to exact Zoeppritz equation AVA inversion[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1337-1341.
[9] LU J, YANG Z, WANG Y, et al.Joint PP and PS AVA seismic inversion using exact Zoeppritz equations[J]. Geophysics, 2015, 80(5): R239-R250.
[10] WANG B L, LIN Y, ZHANG G Z, et al.Prestack seismic stochastic inversion based on statistical characteristic parameters[J]. Applied Geophysics, 2021, 18(1): 63-74.
[11] 印兴耀, 曹丹平, 王保丽, 等. 基于叠前地震反演的流体识别方法研究进展[J]. 石油地球物理勘探, 2014, 49(1): 22-34, 46.
YIN Xingyao, CAO Danping, WANG Baoli, et al.Research progress of fluid discrimination with pre-stack seismic inversion[J]. Oil Geophysical Prospecting, 2014, 49(1): 22-34, 46.
[12] 甘利灯, 张昕, 王峣钧, 等. 从勘探领域变化看地震储层预测技术现状和发展趋势[J]. 石油地球物理勘探, 2018, 53(1): 214-225.
GAN Lideng, ZHANG Xin, WANG Yaojun, et al.Current status and development trends of seismic reservoir prediction viewed from the exploration industry[J]. Oil Geophysical Prospecting, 2018, 53(1): 214-225.
[13] 张佳佳, 印兴耀, 张广智, 等. 基于线性化岩石物理反演的物性参数预测方法[J]. 石油勘探与开发, 2020, 47(1): 57-64.
ZHANG Jiajia, YIN Xingyao, ZHANG Guangzhi, et al.Prediction method of physical parameters based on linearized rock physics inversion[J]. Petroleum Exploration and Development, 2020, 47(1): 57-64.
[14] 周路, 钟斐艳, 闫佳琛, 等. 四川盆地大猫坪地区二叠系长兴组生物礁气层叠前反演识别[J]. 石油勘探与开发, 2020, 47(1): 86-97.
ZHOU Lu, ZHONG Feiyan, YAN Jiachen, et al.Prestack inversion identification of organic reef gas reservoirs of Permian Changxing Formation in Damaoping area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(1): 86-97.
[15] 姜晓宇, 计智锋, 毛凤军, 等. 薄互储层地震反演方法在尼日尔Fana地区的应用[J]. 地球物理学进展, 2014, 29(3): 1157-1162.
JIANG Xiaoyu, JI Zhifeng, MAO Fengjun, et al.Application of thin reservoir seismic inversion in Fana area, Niger[J]. Progress in Geophysics, 2014, 29(3): 1157-1162.
[16] 陆文凯, 张善文. 基于频率搬移的地震资料约束测井资料外推[J]. 地球物理学报, 2004, 47(2): 354-358.
LU Wenkai, ZHANG Shanwen.Seismic-controlled extrapolation of well-log parameters based on frequency-shift[J]. Chinese Journal of Geophysics, 2004, 47(2): 354-358.
[17] 曹丹平, 印兴耀, 张繁昌, 等. 井间地震约束下的高分辨率波阻抗反演方法研究[J]. 石油物探, 2010, 49(5): 425-429.
CAO Danping, YIN Xingyao, ZHANG Fanchang, et al.Study of high-resolution impedance inversion method constrained by crosswell seismic data[J]. Geophysical Prospecting for Petroleum, 2010, 49(5): 425-429.
[18] 陈彦虎, 毕建军, 邱小斌, 等. 地震波形指示反演方法及其应用[J]. 石油勘探与开发, 2020, 47(6): 1149-1158.
CHEN Yanhu, BI Jianjun, QIU Xiaobin, et al.A method of seismic meme inversion and its application[J]. Petroleum Exploration and Development, 2020, 47(6): 1149-1158.
[19] 撒利明, 杨午阳, 姚逢昌, 等. 地震反演技术回顾与展望[J]. 石油地球物理勘探, 2015, 50(1): 184-202.
SA Liming, YANG Wuyang, YAO Fengchang, et al.Past, present, and future of geophysical inversion[J]. Oil Geophysical Prospecting, 2015, 50(1): 184-202.
[20] CHENG J W, ZHANG F, LI X Y.Nonlinear amplitude inversion using a hybrid quantum genetic algorithm and the exact Zoeppritz equation[J]. Petroleum Science, 2022, 19(3): 1048-1064.
[21] BISWAS R, SEN M K, DAS V, et al. Prestack and poststack inversion using a physics-guided convolutional neural network[J]. Interpretation, 2019, 7(3): SE161-SE174.
[22] CHEN Y Q, SCHUSTER G T. Seismic inversion by Newtonian machine learning[J]. Geophysics, 2020, 85(4): WA185-WA200.
[23] DAS V, POLLACK A, WOLLNER U, et al.Convolutional neural network for seismic impedance inversion[J]. Geophysics, 2019, 84(6): R869-R880.
[24] 孙宇航, 刘洋, 陈天胜. 基于无监督深度学习的多波AVO反演及储层流体识别[J]. 石油物探, 2021, 60(3): 385-394, 413.
SUN Yuhang, LIU Yang, CHEN Tiansheng.Multi-wave amplitude- versus-offset inversion and reservoir fluid identification based on unsupervised deep learning[J]. Geophysical Prospecting for Petroleum, 2021, 60(3): 385-394, 413.
[25] WANG L L, MENG D L, WU B Y.Seismic inversion via closed-loop fully convolutional residual network and transfer learning[J]. Geophysics, 2021, 86(5): R671-R683.
[26] ZOEPPRITZ K.VII b. Über reflexion und durchgang seismischer wellen durch unstetigkeitsflächen[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1919, 1919: 66-84.
[27] 侯国伟, 刘金水, 蔡坤, 等. 东海丽水凹陷古新统源-汇系统及控砂模式[J]. 地质科技情报, 2019, 38(2): 65-74.
HOU Guowei, LIU Jinshui, CAI Kun, et al.Source-to-sink system and sand-controlling model of Paleocene in Lishui Sag, East China Sea Basin[J]. Geological Science and Technology Information, 2019, 38(2): 65-74.
Options
Outlines

/