[1] 马新华, 谢军, 雍锐, 等. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J]. 石油勘探与开发, 2020, 47(5): 841-855.
MA Xinhua, XIE Jun, YONG Rui, et al.Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development. 2020, 47(5): 841-855.
[2] 戴金星, 倪云燕, 刘全有, 等. 四川超级气盆地[J]. 石油勘探与开发, 2021, 48(6): 1081-1088.
DAI Jinxing, NI Yunyan, LIU Quanyou, WU Xiaoqi, et al.Sichuan super gas basin in southwest China[J]. Petroleum Exploration and Development. 2021, 48(6): 1081-1088.
[3] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al.Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
[4] 郭彤楼. 深层页岩气勘探开发进展与攻关方向[J]. 油气藏评价与开发, 2021, 11(1): 1-6.
GUO Tonglou.Progress and research direction of deep shale gas exploration and development[J]. Reservoir Evaluation and Development, 2021, 11(1): 1-6.
[5] WOOD D, SCHMIT B E, RIGGINS L, et al.Cana Woodford stimulation practices—a case history[R]. SPE 143960-MS, 2011.
[6] FARINAS M, FONSECA E.Hydraulic fracturing simulation case study and post frac analysis in the Haynesville shale[R]. SPE 163847-MS, 2013.
[7] 徐中华, 郑马嘉, 刘忠华, 等. 四川盆地南部地区龙马溪组深层页岩岩石物理特征[J]. 石油勘探与开发. 2020, 47(6): 1100-1110.
XU Zhonghua, ZHENG Majia, LIU Zhonghua, et al.Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development. 2020, 47(6): 1100-1110.
[8] 张金川, 陶佳, 李振, 等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41(1): 15-28.
ZHANG Jinchuan, TAO Jia, LI Zhen, et al.Prospect of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1): 15-28.
[9] ZOU C N, YANG Z, ZHU R K, et al.Geologic significance and optimization technique of sweet spots in unconventional shale systems[J]. Journal of Asian Earth Sciences, 2019, 178: 3-19.
[10] 唐建明, 徐天吉, 程冰洁, 等. 四川盆地深层页岩气“甜点”预测与钻井工程辅助设计技术[J]. 石油物探, 2021, 60(3): 479-487.
TANG Jianming, XU Tianji, CHENG Bingjie, et al.Sweet-spot prediction and aided design for drilling engineering: Application to deep shale gas reservoirs in the Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2021, 60(3): 479-487.
[11] 马永生, 张建宁, 赵培荣, 等. 物探技术需求分析及攻关方向思考: 以中国石化油气勘探为例[J]. 石油物探, 2016, 55(1): 1-9.
MA Yongsheng, ZHANG Jianning, ZHAO Peirong, et al.Requirement analysis and research direction for the geophysical prospecting technology of Sinopec[J]. Geophysical Prospecting for Petroleum, 2016, 55(1): 1-9.
[12] 刘瑞合, 赵金玉, 印兴耀, 等. VTI介质各向异性参数层析反演策略与应用[J]. 石油地球物理勘探, 2017, 52(3): 484-490, 3.
LIU Ruihe, ZHAO Jinyu, YIN Xingyao, et al.Strategy of anisotropic parameter tomography inversion in VTI medium[J]. Oil Geophysical Prospecting, 2017, 52(3): 484-490, 3.
[13] SONG Y H, CHEN H, WANG X M.Stepwise inversion method for determining anisotropy parameters in a horizontal transversely isotropic formation[J]. Applied Geophysics, 2019, 16(2): 233-242.
[14] 许杰, 何治亮, 董宁, 等. 含气页岩有机碳含量地球物理预测[J]. 石油地球物理勘探, 2013, 48(S1): 64-68, 202, 7.
XU Jie, HE Zhiliang, DONG Ning, et al. Total organic carbon content prediction of gas-bearing shale with geophysical methods[J]. Oil Geophysical Prospecting, 2013, 48(S1): 64-68, 202, 7.
[15] 徐天吉, 程冰洁, 胡斌, 等. 基于VTI介质弹性参数的页岩脆性预测方法及其应用[J]. 石油与天然气地质, 2016, 37(6): 971-978.
XU Tianji, CHENG Bingjie, HU Bin, et al.Shale brittleness prediction based on elastic parameters of VTI media[J]. Oil & Gas Geology, 2016, 37(6): 971-978.
[16] HE J M, ZHANG Z B, LI X.Numerical analysis on the formation of fracture network during the hydraulic fracturing of shale with pre-existing fractures[J]. Energies, 2017, 10(6): 736.
[17] KRESSE O, WENG X W.Numerical modeling of 3D hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3863-3881.
[18] LI S B, ZHANG D X.A fully coupled model for hydraulic-fracture growth during multiwell-fracturing treatments: Enhancing fracture complexity[J]. SPE Production & Operations, 2018, 33(2): 235-250.
[19] 沈骋, 郭兴午, 陈马林, 等. 深层页岩气水平井储层压裂改造技术[J]. 天然气工业, 2019, 39(10): 68-75.
SHEN Cheng, GUO Xingwu, CHEN Malin, et al.Horizontal well fracturing stimulation technology for deep shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10): 68-75.
[20] 刘清友, 朱海燕, 陈鹏举. 地质工程一体化钻井技术研究进展及攻关方向: 以四川盆地深层页岩气储层为例[J]. 天然气工业, 2021, 41(1): 178-188.
LIU Qingyou, ZHU Haiyan, CHEN Pengju.Research progress and direction of geology-engineering integrated drilling technology: A case study on the deep shale gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 178-188.
[21] 孙焕泉, 周德华, 赵培荣, 等. 中国石化地质工程一体化发展方向[J]. 油气藏评价与开发, 2021, 11(3): 269-280.
SUN Huanquan, ZHOU Dehua, ZHAO Peirong, et al.Geology- engineering integration development direction of Sinopec[J]. Reservoir Evaluation and Development, 2021, 11(3): 269-280.
[22] 张艳, 张春雷, 成育红, 等. 基于机器学习的多地震属性沉积相分析[J]. 特种油气藏, 2018, 25(3): 13-17.
ZHANG Yan, ZHANG Chunlei, CHENG Yuhong, et al.Multi-attribute seismic sedimentary facies analysis based on machine learning[J]. Special Oil & Gas Reservoirs, 2018, 25(3): 13-17.
[23] DAS V, MUKERJI T.Petrophysical properties prediction from pre-stack seismic data using convolutional neural networks[M]// BEVC D, NEDORUB O. SEG Technical Program Expanded Abstracts 2019. Houston: Society of Exploration Geophysicists, 2019: 2328-2332.
[24] 吴正阳, 莫修文, 柳建华, 等. 裂缝性储层分级评价中的卷积神经网络算法研究与应用[J]. 石油物探, 2018, 57(4): 618-626.
WU Zhengyang, MO Xiuwen, LIU Jianhua, et al.Convolutional neural network algorithm for classification evaluation of fractured reservoirs[J]. Geophysical Prospecting for Petroleum, 2018, 57(4): 618-626.
[25] AL-ANAZI A F, GATES I D. Support vector regression to predict porosity and permeability: Effect of sample size[J]. Computers & Geosciences, 2012, 39: 64-76.
[26] 安鹏, 曹丹平, 赵宝银, 等. 基于LSTM循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展, 2019, 34(5): 1849-1858.
AN Peng, CAO Danping, ZHAO Baoyin, et al.Reservoir physical parameters prediction based on LSTM recurrent neural network[J]. Progress in Geophysics, 2019, 34(5): 1849-1858.
[27] ALFARRAJ M, ALREGIB G.Semi-supervised learning for acoustic impedance inversion[M]//BEVC D, NEDORUB O. SEG Technical Program Expanded Abstracts 2019. Houston: Society of Exploration Geophysicists, 2019: 2298-2302.
[28] 黄旭日, 代月, 徐云贵, 等. 基于深度学习算法不同数据集的地震反演实验[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 16-25.
HUANG Xuri, DAI Yue, XU Yungui, et al.Seismic inversion experiments based on deep learning algorithm using different datasets[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6): 16-25.
[29] BOLANDI V, KADKHODAIE A, FARZI R.Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi Formation, the Persian Gulf Basin, offshore Iran[J]. Journal of Petroleum Science and Engineering, 2017, 151: 224-234.
[30] 王惠君, 赵桂萍, 李良, 等. 基于卷积神经网络(CNN)的泥质烃源岩TOC预测模型: 以鄂尔多斯盆地杭锦旗地区为例[J]. 中国科学院大学学报, 2020, 37(1): 103-112.
WANG Huijun, ZHAO Guiping, LI Liang, et al.TOC prediction model for muddy source rocks based on convolutional neural network (CNN): A case study of the Hangjinqi area of the Ordos Basin[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1): 103-112.
[31] 李硕, 韩迎东, 王双, 等. 基于Pearson相关系数的图像误匹配点剔除算法[J]. 激光与光电子学进展, 2021, 58(8): 0810025.
LI Shuo, HAN Yingdong, WANG Shuang, et al.Algorithm for eliminating mismatched points based on Pearson correlation coefficient[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0810025.
[32] YANG X B, YU H Z, WANG D, et al.Road identification system based on CNN[J]. Journal of Physics: Conference Series, 2020, 1486: 042024.
[33] CHICCO D, WARENS M J, JURMAN G.The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623.
[34] 赵亚楠, 郭华玲, 郑宾, 等. 基于KPCA和LSSVM的表面缺陷深度识别[J]. 激光杂志, 2021, 42(3): 74-78.
ZHAO Yanan, GUO Hualing, ZHENG Bin, et al.Research on the surface defect depth recognition based on KPCA and LSSVM[J]. Laser Journal, 2021, 42(3): 74-78.