Experimental study on heterogeneity of shale bedding fractures based on full-diameter cores

Expand
  • 1. Downhole Service Company of CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610051, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation at Southwest Petroleum University, Chengdu 610051, China;
    3. Yan’an Energy Service Co., Ltd., Yan’an 716099, China;
    4. PetroChina Zhejiang Oilfield Company, Hangzhou 310013, China

Received date: 2022-10-06

  Revised date: 2023-04-11

  Online published: 2023-04-17

Abstract

A self-designed full-diameter core experimental facility was used to evaluate the flow heterogeneity of bedding fractures at four radial directions under different closure pressures and injection rates, using full-diameter cores retaining original natural bedding fractures. The distribution morphology of fracture surface affects the conductivity of bedding fractures, and the flow capacity of bedding fractures in four radial directions varies greatly with the closure pressure and injection rate. The rougher the fracture surface, the greater the flow capacity varies with the closure pressure. With the closing pressure increasing, the absolute value of mean deviation of liquidity in four radial directions increases gradually. For unsupported bedding fractures, the mean percentage error (MPE) of the conductivity in four radial directions increase gradually with the increase of the closure pressure. This phenomenon is especially prominent in deep rock samples. It is indicated that the flow heterogeneity of bedding fractures tends to increase with the closure pressure. When proppant is placed in the fracture, at a low closure pressure, due to the combined effects of self-support of rough fracture surface, proppant instability and uneven proppant placement, the flow heterogeneity is greater than that when proppant is not placed at the same closure pressure; however, with the increase of the closure pressure, the proppant becomes compact and stable, and the flow heterogeneity is mitigated gradually.

Cite this article

ZHU Juhui, ZENG Jing, GENG Zhoumei, LI Yongming, WANG Tengfei, LI Deqi, PAN Yong, WANG Juan . Experimental study on heterogeneity of shale bedding fractures based on full-diameter cores[J]. Petroleum Exploration and Development, 0 : 20230803 -20230803 . DOI: 10.11698/PED.20220674

References

[1] 吴奇, 胥云, 王腾飞, 等. 增产改造理念的重大变革: 体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7-12.
WU Qi, XU Yun, WANG Tengfei, et al.The revolution of reservoir stimulation: An introduction of volume fracturing[J]. Natural Gas Industry, 2011, 31(4): 7-12.
[2] 胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887.
XU Yun, LEI Qun, CHEN Ming, et al.Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-887.
[3] STEGENT N, CANDLER C.Downhole microseismic mapping of more than 400 fracturing stages on a multiwell pad at the hydraulic fracturing test site (HFTS): Discussion of operational challenges and analytic results[J]. URTEC2902311-MS, 2018.
[4] 曾联波, 吕文雅, 徐翔, 等. 典型致密砂岩与页岩层理缝的发育特征、形成机理及油气意义[J]. 石油学报, 2022, 43(2): 180-191.
ZENG Lianbo, LYU Wenya, XU Xiang, et al.Development characteristics,formation mechanism and hydrocarbon significance of bedding fractures in typical tight sandstone and shale[J]. Acta Petrolei Sinica, 2022, 43(2): 180-191.
[5] 周彤, 王海波, 李凤霞, 等. 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发, 2020, 47(5): 1039-1051.
ZHOU Tong, WANG Haibo, LI Fengxia, et al.Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5): 1039-1051.
[6] 朱维耀, 马东旭. 层理缝对页岩渗透率的影响及表征[J]. 特种油气藏, 2018, 25(2): 130-133.
ZHU Weiyao, MA Dongxu.Effect of bedding seam on shale permeability and its characterization[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 130-133.
[7] 位云生, 王军磊, 于伟, 等. 基于三维分形裂缝模型的页岩气井智能化产能评价方法[J]. 石油勘探与开发, 2021, 48(4): 787-796.
WEI Yunsheng, WANG Junlei, YU Wei, et al.A smart productivity evaluation method for shale gas wells based on 3D fractal fracture network model[J]. Petroleum Exploration and Development, 2021, 48(4): 787-796.
[8] CHEN C, WANG S X, LU C, et al.A new method of reproducing rock samples with rough surfaces for testing conductivity:A case study on shale propped fractures[R]. IPTC21263-MS, 2021.
[9] 曲占庆, 黄德胜, 杨阳, 等. 气藏压裂裂缝导流能力影响因素实验研究[J]. 断块油气田, 2014, 21(3): 390-393.
QU Zhanqing, HUANG Desheng, YANG Yang, et al.Experimental research on influence factors of fracture conductivity in gas reservoir[J]. Fault-Block Oil and Gas Field, 2014, 21(3): 390-393.
[10] 韩慧芬, 彭均亮, 吴建, 等. 页岩支撑裂缝长期导流能力测试方法及测试装置改造[J]. 钻采工艺, 2018, 41(1): 55-58.
HAN Huifen, PENG Junliang, WU Jian, et al.Test method for long-term flow conductivity of propped shale fractures and modifications made on test equipment[J]. Drilling & Production Technology, 2018, 41(1): 55-58.
[11] SHAIBU R, GUO B Y, WORTMAN P B, et al.Stress-sensitivity of fracture conductivity of Tuscaloosa Marine Shale cores[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110042.
[12] 郭小哲, 赵刚. 页岩气藏压裂缝网模拟及沟通效果评价[J]. 特种油气藏, 2015, 22(1): 99-102.
GUO Xiaozhe, ZHAO Gang.Simulation of fracturing network of shale gas reservoir and evaluation on communication results[J]. Special Oil & Gas Reservoirs, 2015, 22(1): 99-102.
[13] 孙玉凯, 宋洪庆, 朱维耀, 等. 低渗透油藏非达西渗流地层压力计算方法及分析[J]. 岩土力学, 2009, 30(S2): 138-141.
SUN Yukai, SONG Hongqing, ZHU Weiyao, et al.Formation pressure calculation and analysis of low permeability reservoir with non-Darcy flow[J]. Rock and Soil Mechanics, 2009, 30(S2): 138-141.
[14] 谷晓冬, 郭连军, 徐振洋. 岩石表面粗糙度的三维定量分析方法[J]. 辽宁科技大学学报, 2017, 40(6): 456-461.
GU Xiaodong, GUO Lianjun, XU Zhenyang.Study on three dimensional quantitative analysis of rock surface roughness[J]. Journal of University of Science and Technology Liaoning, 2017, 40(6): 456-461.
[15] FARDIN N, FENG Q, STEPHANSSON O.Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 329-335.
[16] 王卫星, 杨记明. 一种基于图像处理的岩石裂隙粗糙度几何信息算法[J]. 重庆邮电大学学报(自然科学版), 2010, 22(4): 454-457.
WANG Weixing, YANG Jiming.A geometric information on roughness of rock fractures based on image processing[J].Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2010, 22(4): 454-457.
Options
Outlines

/