Prediction of elastic coefficient in anisotropic geostress models for Gulong shale, Songliao Basin, NE China

Expand
  • 1. Exploration and Development Research Institute of PetroChina Daqing Oilfield Co., Ltd., Daqing 163712, China;
    2. Heilongjiang Provincial Key Laboratory of Continental Shale Oil, Daqing 163712, China

Received date: 2023-04-01

  Revised date: 2023-06-10

  Online published: 2023-07-26

Abstract

Based on the acoustic logging data of Gulong shale in the Cretaceous Qingshankou Formation in the Songliao Basin, the five elastic parameters C11, C13, C33, C44 and C66 are calculated respectively using different elastic coefficient prediction models, and the accuracy of calculation results of different models is analyzed. Firstly, according to the presence and absence of Stoneley wave patterns of acoustic logging, the estimation models for the five elastic stiffness coefficients are divided into two categories: the ANNIE, M-ANNIE1, and M-ANNIE2 models with Stoneley wave logging data; and the M-ANNIE3 and V-reg models without Stoneley wave logging data. By comparing the prediction performance of different models with the measured C11, C13, and C66 of cores, it is found that the elastic coefficient obtained by the M-ANNIE2 model is in the best agreement with the measured values, but the V-reg model has wider applicability in old wells without array acoustic logging data. Finally, three kinds of geostress models are used for calculation and accuracy comparison. It is found that the anisotropic geostress model has the highest accuracy, and the average absolute error between the minimum horizontal stress calculated by this model and the engineering closure pressure is 1.7 MPa, which meets the requirements of the geostress parameter evaluation.

Cite this article

ZHANG Zhaoqian, YAN Weilin, YIN Shujun, ZHENG Jiandong, CHEN Longchuan, ZHU Jianhua . Prediction of elastic coefficient in anisotropic geostress models for Gulong shale, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2023 : 20231006 -20231006 . DOI: 10.11698/PED.20230171

References

[1] 杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559.
YANG Lei, JIN Zhijun.Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553-559.
[2] 窦立荣, 温志新, 王建君, 等. 2021 年世界油气勘探形势分析与思考[J]. 石油勘探与开发, 2022, 49(5): 1033-1044.
DOU Lirong, WEN Zhixin, WANG Jianjun, et al.Analysis of the world oil and gas exploration situation in 2021[J]. Petroleum Exploration and Development, 2022, 49(5): 1033-1044.
[3] 孙龙德, 刘合, 何文渊, 等. 大庆古龙页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463.
SUN Longde, LIU He, HE Wenyuan, et al.An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463.
[4] 王广昀, 王凤兰, 蒙启安, 等. 古龙页岩油战略意义及攻关方向[J]. 大庆石油地质与开发, 2020, 39(3): 8-19.
WANG Guanyun, WANG Fenglan, MENG Qian, et al.Strategic significance and research direction for Gulong shale oil[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 8-19.
[5] 王玉华, 梁江平, 张金友, 等. 松辽盆地古龙页岩油资源潜力及勘探方向[J]. 大庆石油地质与开发, 2020, 39(3): 20-34.
WANG Yuhua, LIANG Jiangping, ZHANG Jinyou, et al.Resource potential and exploration direction of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 20-34.
[6] 雷群, 胥云, 才博, 等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发, 2022, 49(1): 166-172.
LEI Qun, XU Yun, CAI Bo, et al.Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166-172.
[7] 王小军, 梁利喜, 赵龙, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质, 2019, 40(3): 661-668.
WANG Xiaojun, LIANG Lixi, ZHAO Long, et al.Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 661-668.
[8] 王英伟, 王林生, 覃建华, 等. 致密砾岩储层岩石力学参数及地应力测井评价方法研究[J]. 测井技术, 2021, 45(6): 624-629.
WANG Yingwei, WANG Linsheng, QIN Jianhua, et al.Log evaluation method of rock mechanics and in-situ stress characteristics of tight conglomerate formations[J]. Well Logging Technology, 2021, 45(6): 624-629.
[9] 刘国强. 非常规油气勘探测井评价技术的挑战与对策[J]. 石油勘探与开发, 2021, 48(5): 891-902.
LIU Guoqiang.Challenges and countermeasures of log evaluation in unconventional petroleum exploration[J]. Petroleum Exploration and Development, 2021, 48(5): 891-902.
[10] HIGGINS S, GOODWIN S, DONALD A, et al.Anisotropic Stress Models Improve Completion Design in the Baxter Shale[R]. SPE 115736, 2008.
[11] 冯子辉, 柳波, 邵红梅, 等. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能[J]. 大庆石油地质与开发, 2020, 39(3): 72-85.
FENG Zihui, LIU Bo, SHAO Hongmei, et al.The diagenesis evaluation and accumulating performance of the mud shale in Qingshankou Formation in Gulong area, Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 72-85.
[12] JOHNSTON D H.Physical properties of shale at temperature and pressure[J]. Geophysics, 1987, 52(10): 1391-1401.
[13] VERNNIK L, LIU X Z.Velocity anisotropy in shales: A petrophysical study. Geophysics, 1997, 62(2): 521-532.
[14] 徐烽淋, 陈乔, 朱洪林, 等. 页岩层理结构对超声波特性响应分析及应用[J]. 石油勘探与开发, 2019, 46(1): 79-88.
XU Fenglin, CHEN Qiao, ZHU Honglin, et al.Response analysis of shale bedding structure to ultrasonic characteristics and its application[J]. Petroleum Exploration and Development, 2019, 46(1): 79-88.
[15] 王小琼, 葛洪魁, 王文文, 等. 致密储层岩石应力各向异性与材料各向异性的实验研究[J]. 地球物理学报, 2021, 64(12): 4239-4251.
WANG Xiaoqiong, GE Hongkui, WANG Wenwen, et al.Experimental study on stress-related and matrix-related anisotropy in tight reservoirs[J]. Chinese Journal of Geophysics, 2021, 64(12): 4239-4251.
[16] QUIREIN J, HORNBY B, FAM M, et al.Geomechanical workflow and sensitivity study for calibrating and predicting elastic moduli and minimum horizontal stress from well logs in an anisotropic formation[A]. Online: SPWLA 61th Annual Logging Symposium, 2020.
[17] SCHOENBERG M, MUIR F, SAYERS C.Introducing Annie: A single three parameter anisotropic velocity model for shales[J]. Journal of Seismic Exploration, 1996, 5(1): 35-49.
[18] THOMSEN L.Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1954-1966.
[19] SUAREZ-RIVERA R, BRATTON T R. Estimating horizontal stress from three-dimensional anisotropy[P].2012, U.S. Patent No. 8175807.
[20] QUIREIN J, EID M, CHENG A.Predicting the stiffness tensor of a transversely isotropic medium when the vertical poisson’s ratio is less than the horrizontal poisson’s ratio[A]. Abu Dhabi: SPWLA 55th Annual Logging Symposium, 2014.
[21] 唐晓明, 郑传汉. 定量测井声学[M]. 北京: 石油工业出版社, 2004: 86-87.
TANG Xiaoming, ZHENG Chuanhan.Quantitative logging acoustics[M]. Beijing: Petroleum Industry Press, 2004: 86-87.
[22] MURPHY E, BARRAZA S R, GU M, et al.New models for acoustic anisotropic interpretation in shale[A]. Long Beach: SPWLA 56th Annual Logging Symposium, 2015.
[23] 刘忠华, 宋连腾, 王长胜, 等. 各向异性快地层最小水平主应力测井计算方法[J]. 石油勘探与开发, 2017, 44(5): 745-752.
LIU Zhonghua, SONG Lianteng, WANG Changsheng, et al.Evaluation method of the least horizontal principal stress by logging data in anisotropic fast formations[J]. Petroleum Exploration and Development, 2017, 44(5): 745-752.
[24] TANG H Y, LI S B, ZHANG D X.The effect of heterogeneity on hydraulic fracturing in shale[J]. Journal of Petroleum Science and Engineering, 2018, 162: 292-308.
[25] WANG Z J.Seismic anisotropy in sedimentary rocks, part 1: A single-plug laboratory method[J]. Geophysics, 2002, 67(5): 1415-1422.
[26] THIERCELIN M J, PLUMB R A.Core-Based Prediction of Lithologic Stress Contrasts in East Texas Formations[R]. SPE 21847, 1991.
[27] 黄荣樽, 庄锦江. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺, 1986, 8(3): 1-14.
HUANG Rongzun, ZHUANG Jinjiang.A new method for predicting formation fracture pressure[J]. Oil Drilling & Production Technology, 1986, 8(3): 1-14.
[28] Fjaer E, Horsrud P, Raaen A M, et al.Petroleum related rock mechanics[M]. Elsevier, 1992.
[29] ELLEFSEN k J, TOKSÖZ M N, TUBMAN K M, et al. Estimating a shear modulus of a transversely isotropic formation[J]. Geophysics, 1992, 57(11): 1428-1434.
[30] NORRIS A N, SINHA B K.Weak elastic anisotropy and the tube wave[J]. Geophysics, 1993, 58(8): 1091-1098.
[31] HOWS A M, HOFMANN R, GONZALEZ E F.Characterization of anisotropic dynamic mechanical rock properties in shale gas plays[R]. ARAM 13-604, 2013.
[32] 时梦璇, 刘之的, 杨学峰, 等. 地层孔隙压力地球物理测井预测技术综述及展望[J]. 地球物理学进展, 2020, 35(5): 1845-1853.
SHI Mengxuan, LIU Zhide, Yang Xuefeng, et al.Review and prospect prediction technology for formation pore pressure by geophysical well logging[J]. Progress in Geophysics, 2020, 35(5): 1845-1853.
[33] 宋连腾, 刘忠华, 李潮流, 等. 基于横向各向同性模型的致密砂岩地应力测井评价方法[J]. 石油学报, 2015, 36(6): 707-714.
SONG Lianteng, LIU Zhonghua, LI Chaoliu, et al.Geostress logging evaluation method of tight sandstone based on transversely isotropic model[J]. Acta Petrolei Sinica, 2015, 36(6): 707-714.
Options
Outlines

/