To study the fluid dynamic response mechanism under the working condition of water injection well borehole, based on the microelement analysis of fluid mechanics and the classical theory of hydrodynamics, a fluid microelement pressure-flow rate relationship model is built to derive and solve the dynamic distribution of fluid pressure and flow rate in the space of well borehole. Combined with the production data of a typical inclined well in China, numerical simulations and analyses are carried out to analyze the dynamic distribution of pressure in the well borehole at different injection pressures and injection volumes, the delayed and attenuated characteristics of oil tubing fluid transmission, and the dynamic distribution of well bore pressure amplitude under the fluctuation of wellhead pressure. The results show that the pressure loss along the wellbore has nothing to do with the absolute pressure, and the absolute pressure at the time of injection needs not be considered in the design of the coding and decoding scheme for wave code communication. When the injection pressure is constant, the higher the injection flow rate at the wellhead, the larger the pressure loss along the wellbore. The fluid wave signal delay amplitude mainly depends on the length of the wellbore. The smaller the tubing diameter, the larger the fluid wave signal attenuation amplitude. The higher the target wave code amplitude (differential pressure identification RMS) generated at the same well depth, the greater the wellhead pressure wave amplitude required to overcome the wellbore along-stream loss.
[1] 刘合, 郑立臣, 俞佳庆, 等. 分层注水井下监测与数据传输技术的发展及展望[J]. 石油勘探与开发, 2023, 50(1): 174-182.
LIU He, ZHENG Lichen, YU Jiaqing, et al.Development and prospect of downhole monitoring and data transmission technology for separated zone water injection[J]. Petroleum Exploration and Development, 2023, 50(1): 174-182.
[2] 刘合, 肖国华, 孙福超, 等. 新型大斜度井同心分层注水技术[J]. 石油勘探与开发, 2015, 42(4): 512-517.
LIU He, XIAO Guohua, SUN Fuchao, et al.A new concentric zonal water injection technique for highly-deviated wells[J]. Petroleum Exploration and Development, 2015, 42(4): 512-517.
[3] 王敬, 齐向生, 刘慧卿, 等. 缝洞型油藏水驱剩余油形成机制及换向注水增油机理[J]. 石油勘探与开发, 2022, 49(5): 965-976.
WANG Jing, QI Xiangsheng, LIU Huiqing, et al.Mechanisms of remaining oil formation by water flooding and enhanced oil recovery by reversing water injection in fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2022, 49(5): 965-976.
[4] 贾德利, 刘合, 张吉群, 等. 大数据驱动下的老油田精细注水优化方法[J]. 石油勘探与开发, 2020, 47(3): 629-636.
JIA Deli, LIU He, ZHANG Jiqun, et al.Data-driven optimization for fine water injection in a mature oil field[J]. Petroleum Exploration and Development, 2020, 47(3): 629-636.
[5] 刘合, 裴晓含, 贾德利, 等. 第四代分层注水技术内涵、应用与展望[J]. 石油勘探与开发, 2017, 44(4): 608-614.
LIU He, PEI Xiaohan, JIA Deli, et al.Connotation, application and prospect of the fourth-generation separated layer water injection technology[J]. Petroleum Exploration and Development, 2017, 44(4): 608-614.
[6] 匡立春, 刘合, 任义丽, 等. 人工智能在石油勘探开发领域的应用现状与发展趋势[J]. 石油勘探与开发, 2021, 48(1): 1-11.
KUANG Lichun, LIU He, REN Yili, et al.Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development, 2021, 48(1): 1-11.
[7] 姚斌, 杨玲智, 于九政, 等. 波码通信数字式分层注水技术研究与应用[J]. 石油机械, 2020, 48(5): 71-77.
YAO Bin, YANG Lingzhi, YU Jiuzheng, et al.Digital layered water injection based on wave code communication[J]. China Petroleum Machinery, 2020, 48(5): 71-77.
[8] 岳元龙, 张鹤睿, 耿钦, 等. 基于管柱压力波的注水井无线通信方法[J]. 石油机械, 2021, 49(2): 81-87.
YUE Yuanlong, ZHANG Herui, GENG Qin, et al.The wireless communication method of water injector based on string pressure wave[J]. China Petroleum Machinery, 2021, 49(2): 81-87.
[9] PAÏDOUSSIS M P. Pipes conveying fluid: A fertile dynamics problem[J]. Journal of Fluids and Structures, 2022, 114: 103664.
[10] ALVIS T, CEBALLES S, ABDELKEFI A.Sensitive parameter identification and uncertainty quantification for the stability of pipeline conveying fluid[J]. International Journal of Mechanics and Materials in Design, 2022, 18(2): 327-351.
[11] AN C, SU J.Dynamic behavior of axially functionally graded pipes conveying fluid[J]. Mathematical Problems in Engineering, 2017, 2017: 6789634.
[12] WANG Y, CHENG S Q, FENG N C, et al.The physical process and pressure-transient analysis considering fractures excessive extension in water injection wells[J]. Journal of Petroleum Science and Engineering, 2017, 151: 439-454.
[13] HAN B, CUI G D, WANG Y Q, et al.Effect of fracture network on water injection huff-puff for volume stimulation horizontal wells in tight oil reservoir: Field test and numerical simulation study[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109106.
[14] 杨玲智, 巨亚锋, 申晓莉, 等. 数字式分层注水流动特性研究与分析[J]. 石油机械, 2014, 42(10): 52-55.
YANG Lingzhi, JU Yafeng, SHEN Xiaoli, et al.Study and analysis of flow characteristics for digital separate-zone water flooding[J]. China Petroleum Machinery, 2014, 42(10): 52-55.
[15] ZHANG L M, XU C, ZHANG K, et al.Production optimization for alternated separate-layer water injection in complex fault reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107409.
[16] DEDE E M, ZHOU Y Q, TAMBO T, et al.Measurement of low Reynolds number flow emanating from a Turing pattern microchannel array using a modified Bernoulli equation technique[J]. Experimental Thermal and Fluid Science, 2022, 139: 110722.
[17] 黄煜, 季飞, 温淼文, 等. 宏观尺度下的分子通信原型机综述[J]. 中国科学(信息科学), 2021, 51(12): 2016-2036.
HUANG Yu, JI Fei, WEN Miaowen, et al.Survey on macro-scale molecular communication prototypes[J]. SCIENTIA SINICA Informationis, 2021, 51(12): 2016-2036.