[1] DEVLIN J, CHANG M W, LEE K, et al.BERT: Pre-training of deep bidirectional transformers for language understanding[C]//BURSTEIN J, DORAN C, SOLORIO T. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186.
[2] RADFORD A, NARASIMHAN K, SALIMANS T, et al.Improving language understanding by generative pre-training[DB/OL]. [2024-04-12].https://cdn.openai.com/research-covers/language-unsupervised/ language_understanding_paper.pdf.
[3] RAFFEL C, SHAZEER N, ROBERTS A, et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21(1): 140.
[4] CHUNG H W, HOU L, LONGPRE S, et al.Scaling instruction: Finetuned language models[J]. Journal of Machine Learning Research, 2024, 25(70): 1-53.
[5] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: Open and efficient foundation language models[DB/OL]. (2023-02-27) [2024-04-12]. https://arxiv.org/abs/2302.13971.
[6] YANG A Y, XIAO B, WANG B N, et al. Baichuan 2: Open large-scale language models[DB/OL]. (2023-09-20)[2024-04-12]. https://arxiv.org/abs/2309.10305.
[7] InternLM Team. InternLM: A multilingual language model with progressively enhanced capabilities[DB/OL].[2024-04-12]. https:// static.aminer.cn/upload/pdf/127/1564/656/6481884993eaf7045294a0c4_0. pdf.
[8] HU E J, SHEN Y L, WALLIS P, et al. LoRA: Low-rank adaptation of large language models[DB/OL]. (2021-10-16)[2024-04-12]. https:// arxiv.org/abs/2106.096851.
[9] FANG Y X, WANG W, XIE B H, et al. EVA: Exploring the limits of masked visual representation learning at scale[R]. Vancouver:2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
[10] OQUAB M, DARCET T, MOUTAKANNI T, et al. DINOv2: Learning robust visual features without supervision[DB/OL]. (2024-02-02)[2024-04-12]. https://arxiv.org/abs/2304.07193.
[11] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[R]. Paris:2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
[12] CHEN T, SAXENA S, LI L L, et al. Pix2seq: A language modeling framework for object detection[DB/OL]. (2022-03-27)[2024-04-12]. https://arxiv.org/abs/2109.10852.
[13] WANG X L, ZHANG X S, CAO Y, et al. SegGPT: Towards segmenting everything in context[R]. Paris:2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
[14] RADFORD A, KIM J W, HALLACY C, et al.Learning transferable visual models from natural language supervision[J]. Proceedings of Machine Learning Research, 2021, 139: 8748-8763.
[15] JIA C, YANG Y F, XIA Y, et al.Scaling up visual and vision-language representation learning with noisy text supervision[J]. Proceedings of Machine Learning Research, 2021, 139: 4904-4916.
[16] ZHAI X H, WANG X, MUSTAFA B, et al. LiT: Zero-shot transfer with locked-image text tuning[R]. New Orleans:2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
[17] SUN Q, FANG Y X, WU L, et al. EVA-CLIP: Improved training techniques for CLIP at scale[DB/OL]. (2023-03-27)[2024-04-12]. https://arxiv.org/abs/2303.15389.
[18] GIRDHAR R, EL-NOUBY A, LIU Z, et al. ImageBind one embedding space to bind them all[R]. Vancouver:2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
[19] HONG Y N, ZHEN H Y, CHEN P H, et al.3D-LLM: Injecting the 3D world into large language models[C]//OH A, NAUMANN T, GLOBERSON A, et al. Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Red Hook: Curran Associates, Inc., 2023: 20482-20494.
[20] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[R]. New Orleans:2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
[21] HU A, RUSSELL L, YEO H, et al. GAIA-1: A generative world model for autonomous driving[DB/OL]. (2023-09-29)[2024-04-12]. https://arxiv.org/abs/2309.17080.
[22] WANG W H, CHEN Z, CHEN X K, et al.VisionLLM: Large language model is also an open-ended decoder for vision-centric tasks[C]//OH A, NAUMANN T, GLOBERSON A, et al. Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Red Hook: Curran Associates, Inc., 2023: 61501-61513.
[23] YUAN H B, LI X T, ZHOU C, et al. Open-vocabulary SAM: Segment and recognize twenty-thousand classes interactively[DB/OL]. (2024-01-05)[2024-04-12]. https://arxiv.org/abs/2401.02955.
[24] WU J F, JIANG Y, LIU Q H, et al. General object foundation model for images and videos at scale[DB/OL]. (2023-12-14)[2024-04-12]. https://arxiv.org/abs/2312.09158.
[25] LIU H T, LI C Y, WU Q Y, et al.Visual instruction tuning[C]//OH A, NAUMANN T, GLOBERSON A, et al. Advances in Neural Information Processing Systems 36 (NeurIPS 2023). Red Hook: Curran Associates, Inc., 2023: 34892-34916.
[26] ZHU D Y, CHEN J, SHEN X Q, et al. MiniGPT-4: Enhancing vision-language understanding with advanced large language models[DB/OL]. (2023-10-02)[2024-04-12]. https://arxiv.org/abs/2304. 10592.
[27] WANG W H, LV Q S, YU W M, et al. CogVLM: Visual expert for pretrained language models[DB/OL]. (2024-02-04)[2024-04-12]. https://arxiv.org/abs/2311.03079.
[28] LIN Z, LIU C, ZHANG R R, et al. SPHINX: The joint mixing of weights, tasks,visual embeddings for multi-modal large language models[DB/OL]. (2023-11-13)[2024-04-12]. https://arxiv. org/abs/2311.07575.
[29] ICHTER B, BROHAN A, CHEBOTAR Y, et al.Do as I can, not as I say: Grounding language in robotic affordances[J]. Proceedings of Machine Learning Research, 2023, 205: 287-318.
[30] O’NEILL A, REHMAN A, MADDUKURI A, et al. Open X-embodiment: Robotic learning datasets and RT-X models[DB/OL]. (2024-04-02)[2024-04-12]. https://arxiv.org/abs/2310.08864.
[31] LIAO H C, SHEN H M, LI Z N, et al.GPT-4 enhanced multimodal grounding for autonomous driving: Leveraging cross-modal attention with large language models[J]. Communications in Transportation Research, 2024, 4: 100116.
[32] ZHOU Y S, HUANG L Y, BU Q W, et al. Embodied understanding of driving scenarios[DB/OL]. (2024-03-07)[2024-04-12]. https://arxiv.org/ abs/2403.04593.
[33] MAO J G, QIAN Y X, YE J J, et al. GPT-driver: Learning to drive with GPT[J]. (2023-12-05)[2024-04-12]. https://arxiv.org/abs/2310. 01415.
[34] SHA H, MU Y, JIANG Y X, et al. LanguageMPC: Large language models as decision makers for autonomous driving[DB/OL]. (2023-10-13)[2024-04-12]. https://arxiv.org/abs/2310.03026.
[35] TIAN X Y, GU J R, LI B L, et al. DriveVLM: The convergence of autonomous driving and large vision-language models[DB/OL]. (2024-03-31)[2024-04-12]. https://arxiv.org/abs/2402.12289.
[36] WEN L C, FU D C, LI X, et al. DiLu: A knowledge-driven approach to autonomous driving with large language models[DB/OL]. (2024-02-22)[2024-04-12]. https://arxiv.org/abs/2309.16292.
[37] ] SHAO H, HU Y X, WANG L T, et al. LMDrive: Closed-loop end-to-end driving with large language models[DB/OL]. (2023-12-21)[2024-04-12]. https://arxiv.org/abs/2312.07488.
[38] XU Z H, ZHANG Y J, XIE E Z, et al. DriveGPT4: Interpretable end-to-end autonomous driving via large language model[DB/OL]. (2024-03-14)[2024-04-12]. https://arxiv.org/abs/2310.01412.
[39] SIMA C, RENZ K, CHITTA K, et al. DriveLM: Driving with graph visual question answering[DB/OL]. (2023-12-21)[2024-04-12]. https://arxiv.org/abs/2312.14150.
[40] JIA F, MAO W X, LIU Y F, et al. ADriver-I: A general world model for autonomous driving[DB/OL]. (2023-11-22)[2024-04-12]. https://arxiv.org/abs/2311.13549.
[41] WANG X F, ZHU Z, HUANG G, et al. DriveDreamer: Towards real-world-driven world models for autonomous driving[DB/OL]. (2023-11-27)[2024-04-12]. https://arxiv.org/abs/2309.09777.
[42] ZHAO G S, WANG X F, ZHU Z, et al. DriveDreamer-2: LLM-enhanced world models for diverse driving video generation[DB/OL]. (2024-04-11)[2024-04-12]. https://arxiv.org/abs/2403.06845.
[43] WANG Y Q, HE J W, FAN L, et al. Driving into the future: Multiview visual forecasting and planning with world model for autonomous driving[DB/OL]. (2023-11-29)[2024-04-12]. https://arxiv. org/abs/2311.17918.
[44] YANG J Z, GAO S Y, QIU Y H, et al. Generalized predictive model for autonomous driving[DB/OL]. (2024-03-14)[2024-04-12]. https:// arxiv.org/abs/2403.09630.
[45] ZHANG L J, XIONG Y W, YANG Z, et al.Copilot4D: Learning unsupervised world models for autonomous driving via discrete diffusion[R]. Vienna: ICLR 2024, 2024.
[46] ZHENG W Z, CHEN W L, HUANG Y H, et al. OccWorld: Learning a 3D occupancy world model for autonomous driving[DB/OL]. (2023-11-27)[2024-04-12]. https://arxiv.org/abs/2311.16038.
[47] WU Y Q, LIU Y H, LIU Y F, et al. zhihaiLLM/ wisdomInterrogatory[DB/OL]. (2024-03-18)[2024-04-12]. https://github. com/zhihaiLLM/wisdomInterrogatory.
[48] 阿里云计算有限公司. 通义法睿[EB/OL].[2024-04-12]. https:// tongyi.aliyun.com/farui.
Alibaba Cloud Computing Co. Ltd.Tongyi Farui[EB/OL]. [2024-04-12]. https://tongyi.aliyun.com/farui.
[49] NGUYEN H T. A brief report on LawGPT 1.0: A virtual legal assistant based on GPT-3[DB/OL]. (2023-02-14)[2024-04-12]. https://arxiv.org/abs/2302.05729.
[50] DU Z X, QIAN Y J, LIU X, et al.GLM: General language model pretraining with autoregressive blank infilling[C]//MURESAN S, NAKOV P, VILLAVICENCIO A. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2022: 320-335.
[51] HUANG Q Z, TAO M X, ZHANG C, et al. Lawyer LLaMA technical report[DB/OL]. (2023-10-14)[2024-04-12]. https://arxiv.org/abs/2305. 15062.
[52] YUE S B, CHEN W, WANG S Y, et al. DISC-LawLLM: Fine-tuning large language models for intelligent legal services[DB/OL]. (2023-09-23)[2024-04-12]. https://arxiv.org/abs/2309.11325.
[53] CUI J X, LI Z J, YAN Y, et al. ChatLaw: Open-source legal large language model with integrated external knowledge bases[DB/OL]. (2023-06-28)[2024-04-12]. https://arxiv.org/abs/2306.16092.
[54] WANG R S, DUAN Y F, LAM C, et al.IvyGPT: InteractiVe Chinese pathway language model in medical domain[C]//FANG L, PEI J, ZHAI G T, et al. Artificial intelligence. Singapore: Springer, 2024: 378-382.
[55] WANG R S, ZHOU R Z, CHEN H M, et al.WangRongsheng/ CareGPT[DB/OL]. [2024-04-12].https://github.com/WangRongsheng/ CareGPT.
[56] SINGHAL K, AZIZI S, TU T, et al.Large language models encode clinical knowledge[J]. Nature, 2023, 620(7972): 172-180.
[57] LI Y X, LI Z H, ZHANG K, et al.ChatDoctor: A medical chat model fine-tuned on a large language model meta-AI (LLaMA) using medical domain knowledge[J]. Cureus, 2023, 15(6): e40895.
[58] XIONG H L, WANG S, ZHU Y T, et al. DoctorGLM: Fine-tuning your Chinese doctor is not a herculean task[DB/OL]. (2023-04-17)[2024-04-12]. https://arxiv.org/abs/2304.01097.
[59] CHEN W, WANG Q S, LONG Z F, et al. DISC-FinLLM: A Chinese financial large language model based on multiple experts fine- tuning[DB/OL]. (2023-10-25)[2024-04-12]. https://arxiv.org/abs/2310.15205.
[60] LAI S Q, XU Z, ZHANG W J, et al. LLMLight: Large language models as traffic signal control agents[DB/OL]. (2024-03-05) [2024-04-12]. https://arxiv.org/abs/2312.16044.
[61] GitHub. SecGPT[DB/OL].[2024-04-12]. https://github.com/Clouditera/ secgpt.
[62] ECKROTH J, GIPSON M, BODEN J, et al.Answering natural language questions with OpenAI’s GPT in the petroleum industry[R]. SPE 214888-MS, 2023.
[63] Deep-time Digital Earth. GeoGPT[EB/OL].[2024-06-11]. https:// geogpt.deep-time.org.
[64] MARLOT M, SRIVASTAVA D N, WONG F K, et al.Unsupervised multitask learning for oil and gas language models with limited resources[R]. SPE 216402-MS, 2023.
[65] RODRIGUES R B M, PRIVATTO P I M, DE SOUSA G J, et al. PetroBERT: A domain adaptation language model for oil and gas applications in Portuguese[C]//PINHEIRO V, GAMALLO P, AMARO R, et al. Computational processing of the Portuguese language. Cham: Springer, 2022: 101-109.
[66] ABIJITH P Y, PATIDAR P, NAIR G, et al.Large language models trained on equipment maintenance text[R]. SPE 216336-MS, 2023.
[67] KUMAR P, KATHURIA S.Large language models (LLMs) for natural language processing (NLP) of oil and gas drilling data[R]. San Antonio: 2023 SPE Annual Technical Conference and Exhibition, 2023.
[68] AVINASH L, PRASHANTH P, PURNAPRAJNA M, et al.Enabling contextual natural language search on oil and gas databases[R]. SPE 216349-MS, 2023.
[69] SINGH A, JIA T X, NALAGATLA V.Generative AI enabled conversational Chabot for drilling and production analytics[R]. SPE 216267-MS, 2023.
[70] YI M, CEGLINSKI K, ASHOK P, et al.Applications of large language models in well construction planning and real-time operation[R]. SPE 217700-MS, 2024.
[71] MALIN C. World’s largest industrial LLM revealed![EB/OL]. (2024-03-04) [2024-05-29]. https://www.middleeastainews.com/p/ aramco-launches-largest-industrial-llm.
[72] TVERITNEV A, KHANJI M, ABDULLAH S, et al.Applying machine learning NLP algorithm for reconciliation geology and petrophysics in rock typing[R]. Abu Dhabi: Abu Dhabi International Petroleum Exhibition and Conference, 2023.
[73] OGUNDARE O, MADASU S, WIGGINS N.Industrial engineering with large language models: A case study of ChatGPT’s performance on oil & gas problems[R]. Athens, Greece: 2023 11th International Conference on Mechatronics and Control Engineering, 2023.
[74] WEI J, WANG X, SCHUURMANS D, et al.Chain-of-thought prompting elicits reasoning in large language models[J]. Advances in Neural Information Processing Systems, 2022, 35: 24824-24837.
[75] KUMAR A.Vision transformer based foundation model for oil reservoir forecasting view affiliations[R]. Oslo, Norway: 85th EAGE Annual Conference & Exhibition, 2024.
[76] SABOO S, SHEKHAWAT D. Enhancing predictive maintenance in an oil & gas refinery using IoT, AI & ML: An generative AI solution[R]. Dharhan, Saudi Arabia: 16th International Petroleum Technology Conference (IPTC2024), 2024:.
[77] LIU H, REN Y L, LI X, et al.Rock thin-section analysis and identification based on artificial intelligent technique[J]. Petroleum Science, 2022, 19(4): 1605-1621.
[78] REN Y, LI X, BI J, et al. Multi-channel attention transformer for rock thin-section image segmentation[J]. Journal of Engineering Research, 2024: in press.
[79] 刘茜, 任义丽, 汪文洁, 等.基于语义分割的页岩孔隙结构智能表征方法[J/OL].北京航空航天大学学报. [2024-06-11]. https://doi.org/10. 13700/j.bh.1001-5965.2024.0018.
LIU Xi, REN Yili, WANG Wenjie, et al.Intelligent representation method of shale pore structure based on semantic segmentation[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. [2024-06-11]. https://doi.org/10.13700/j.bh.1001-5965.2024.0018.
[80] 苏乾潇, 乔德新, 任义丽, 等.基于傅里叶卷积的电成像测井图像修复[J/OL]. 北京航空航天大学学报. [2024-04-12]. https://doi. org/10.13700/j.bh.1001-5965.2023.0754.
SU Qianxiao, QIAO Dexin, REN Yili, et al.Restoration of electrical imaging logging images based on Fourier convolution[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. [2024-04-12]. https://doi.org/10.13700/j.bh.1001-5965.2023.0754.
[81] ZHENG Q, ZHANG D X.RockGPT: Reconstructing three- dimensional digital rocks from single two-dimensional slice with deep learning[J]. Computational Geosciences, 2022, 26(3): 677-696.
[82] SHENG H L, WU X M, SI X, et al. Seismic Foundation Model (SFM): A new generation deep learning model in geophysics[EB/OL]. (2023-12-15)[2024-04-12]. https://arxiv.org/abs/2309.02791.
[83] ZHANG Z, TANG J, FAN B, et al.An intelligent lithology recognition system for continental shale by using digital coring images and convolutional neural networks[J]. Geoenergy Science and Engineering, 2024: 212909.
[84] LI X J, ZHANG T, ZHU Y, et al. Artificial general intelligence (AGI) for the oil and gas industry: A review[EB/OL]. (2024-06-02) [2024-06-10]. https://arxiv.org/abs/2406.00594.
[85] MA Z, HE X, SUN S, et al. Zero-shot digital rock image segmentation with a fine-tuned segment anything model[EB/OL]. (2023-11-17)[2024-06-10]. https://arxiv.org/abs/ 2311.1086.
[86] WU W H, WONG M S, YU X Y, et al. Compositional oil spill detection based on object detector and adapted segment anything model from SAR images[EB/OL]. (2024-01-15)[2024-04-12]. https://arxiv.org/abs/2401.07502.
[87] LIU S C, CHEN J X, HE B G, et al.Adapting segment anything model for shield tunnel water leakage segmentation[C]//CHEN J X, WANG W, JEON G. Proceedings of the 2023 Workshop on Advanced Multimedia Computing for Smart Manufacturing and Engineering. New York: Association for Computing Machinery, 2023: 13-18.
[88] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[EB/OL]. (2023-11-24)[2024-06-11]. https://arxiv.org/abs/2303. 18223.