Current status and development trends of smart geothermal field technology

Expand
  • 1. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China;
    2. Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China

Received date: 2024-03-20

  Revised date: 2024-06-18

  Online published: 2024-06-20

Abstract

To address the key problems in the application of intelligent technology in geothermal development, smart application scenarios for geothermal development were constructed. The research status and existing challenges of intelligent technology in each scenario were analyzed, and the construction scheme of smart geothermal field system was proposed. The smart geothermal field is an organic integration of geothermal development engineering and advanced technologies such as the artificial intelligence. At present, the technology of smart geothermal field is still in the exploratory stage. It has been tested for application in scenarios such as intelligent characterization of geothermal reservoirs, dynamic intelligent simulation of geothermal reservoirs, intelligent optimization of development schemes and smart management of geothermal development. However, it still faces many problems, including the high computational cost, difficult real-time response, multiple solutions and strong model dependence, difficult real-time optimization of dynamic multi-constraints, and deep integration of multi-source data. Therefore, the construction scheme of smart geothermal field system is proposed, which consists of modules including the full database, intelligent characterization, intelligent simulation and intelligent optimization control. The connection between modules is established through the data transmission and the model interaction. In the next stage, it is necessary to focus on the basic theories and key technologies in each module of the intelligent geothermal field system, accelerate the lifecycle intelligent transformation of the geothermal development and utilization, and promote the intelligent, stable, long-term, optimal and safe production of geothermal resources.

Cite this article

LI Gensheng, SONG Xianzhi, SHI Yu, WANG Gaosheng, HUANG Zhongwei . Current status and development trends of smart geothermal field technology[J]. Petroleum Exploration and Development, 0 : 20240809 -20240809 . DOI: 10.11698/PED.20240181

References

[1] 郑元超, 孙薇薇, 刘人和. 地热能产业和利用技术进展及趋势[C]//中国石油学会天然气专业委员会. 第33届全国天然气学术年会(2023)论文集, 2023: 523-528.
ZHENG Yuanchao, SUN Weiwei, LIU Renhe.Progress and trend of geothermal industry and utilization technology[C]//Natural Gas Professional Committee of China Petroleum Society. Proceedings of the 33rd National Natural Gas Academic Annual Conference (05). Chengdu: Natural Gas Professional Committee of China Petroleum Society, 2023: 523-528.
[2] OSINDE N O, BYIRINGIRO J B, GICHANE M M, et al.Process modelling of geothermal drilling system using digital twin for real-time monitoring and control[J]. Designs, 2019, 3(3): 45.
[3] 王君照, 李胜涛, 岳冬冬, 等. 基于GIS与GOCAD的天津双窑凸起构造区热储三维地质建模[J]. 科学技术与工程, 2023, 23(14): 5887-5902.
WANG Junzhao, LI Shengtao, YUE Dongdong, et al.Tree-dimensional geological modeling of thermal reservoir of Shuangyao uplift structural area in Tianjin based on GIS and GOCAD[J]. Science Technology and Engineering, 2023, 23(14): 5887-5902.
[4] AKIN S, KOK M V, URAZ I.Optimization of well placement geothermal reservoirs using artificial intelligence[J]. Computers & Geosciences, 2010, 36(6): 776-785.
[5] XU F Q, SONG X Z, SONG G F, et al.Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode[J]. Energy, 2023, 269: 126777.
[6] JANSEN J D, DOUMA S D, BROUWER D R, et al.Closed-loop reservoir management[R]. SPE 119098-MS, 2009.
[7] ALLO F, COULON J P, FORMENTO J L, et al.Characterization of a carbonate geothermal reservoir using rock-physics-guided deep neural networks[J]. The Leading Edge, 2021, 40(10): 751-758.
[8] ZHAO L X, ZOU C F, CHEN Y Y, et al.Fluid and lithofacies prediction based on integration of well-log data and seismic inversion: A machine-learning approach[J]. Geophysics, 2021, 86(4): M151-M165.
[9] LI Y Y, ALI G, REHMAN AKBAR A.Advances in geothermal energy prospectivity mapping research based on machine learning in the age of big data[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103550.
[10] LIU G, ZHOU B J, LIAO S M.Inverting methods for thermal reservoir evaluation of enhanced geothermal system[J]. Renewable and Sustainable Energy Reviews, 2018, 82(Part 1): 471-476.
[11] DURU O O, HORNE R N.Joint inversion of temperature and pressure measurements for estimation of permeability and porosity fields[R]. SPE 134290-MS, 2010.
[12] SALIMZADEH S, PALUSZNY A, NICK H M, et al.A three-dimensional coupled thermo-hydro-mechanical model for deformable fractured geothermal systems[J]. Geothermics, 2018, 71: 212-224.
[13] SONG G F, SONG X Z, XU F Q, et al.Contributions of thermo- poroelastic and chemical effects to the production of enhanced geothermal system based on thermo-hydro-mechanical-chemical modeling[J]. Journal of Cleaner Production, 2022, 377: 134471.
[14] FU P C, HAO Y, WALSH S D C, et al. Thermal drawdown-induced flow channeling in fractured geothermal reservoirs[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 1001-1024.
[15] KANG F C, LI Y C, TANG C A, et al.Competition between cooling contraction and fluid overpressure on aperture evolution in a geothermal system[J]. Renewable Energy, 2022, 186: 704-716.
[16] SHI Y, CUI Q L, SONG X Z, et al.Thermal performance of the aquifer thermal energy storage system considering vertical heat losses through aquitards[J]. Renewable Energy, 2023, 207: 447-460.
[17] 石宇, 崔启亮, 杨子江, 等. 基于灰色关联度分析和多目标优化的浅层含水层储热性能整体优化[J]. 天然气工业, 2023, 43(6): 156-168.
SHI Yu, CUI Qiliang, YANG Zijiang, et al.Optimizing the thermal energy storage performance of shallow aquifer based on gray correlation analysis and multi-objective optimization[J]. Natural Gas Industry, 2023, 43(6): 156-168.
[18] PANDEY S N, VISHAL V.Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems[J]. Scientific Reports, 2017, 7(1): 17057.
[19] BAKR M, van OOSTROM N, SOMMER W. Efficiency of and interference among multiple Aquifer Thermal Energy Storage systems: A Dutch case study[J]. Renewable Energy, 2013, 60: 53-62.
[20] 石宇, 宋先知, 李根生, 等. 多分支井地热系统CO2与水的取热效果对比[J]. 天然气工业, 2021, 41(11): 179-190.
SHI Yu, SONG Xianzhi, LI Gensheng, et al.Comparison of heat extraction performance between CO2 and water in a multilateral-well geothermal system[J]. Natural Gas Industry, 2021, 41(11): 179-190.
[21] JI J Y, SONG X Z, LI S, et al.Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model[J]. Energy, 2023, 282: 128628.
[22] XU F, SHI Y, SONG X, et al.The characteristics and laws of fracture damage in the long-term production process of high-temperature geothermal resources[J]. Rock Mechanics and Rock Engineering, 2022, 56(1): 275-299.
[23] JI J Y, SONG X Z, LI S, et al.Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model[J]. Energy, 2023, 282: 128628.
[24] TAO J, WU Y, ELSWORTH D, et al.Coupled thermo-hydro- mechanical-chemical modeling of permeability evolution in a CO2-circulated geothermal reservoir[J]. Geofluids, 2019, 2019: 5210730.
[25] RÜHAAK W, HELDMANN C D, PEI L, et al. Thermo-hydro- mechanical-chemical coupled modeling of a geothermally used fractured limestone[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 40-47.
[26] CAI S Z, MAO Z P, WANG Z C, et al.Physics-informed neural networks (PINNs) for fluid mechanics: A review[J]. Acta Mechanica Sinica, 2021, 37(12): 1727-1738.
[27] 陆至彬, 瞿景辉, 刘桦, 等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72(3): 1496-1503.
LU Zhibin, QU Jinghui, LIU Hua, et al.Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. CIESC Journal, 2021, 72(3): 1496-1503.
[28] RAISSI M, PERDIKARIS P, KARNIADAKIS G E.Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
[29] JABER A K, AL-JAWAD S N, ALHURAISHAWY A K. A review of proxy modeling applications in numerical reservoir simulation[J]. Arabian Journal of Geosciences, 2019, 12(22): 701.
[30] NOYE S, MULERO MARTINEZ R, CARNIELETTO L, et al.A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111685.
[31] RAISSI M, PERDIKARIS P, KARNIADAKIS G E.Machine learning linear differential equations using Gaussian processes[J]. Journal of Computational Physics, 2017, 348: 683-693.
[32] CHUANG P-Y, BARBA L A.Experience report of physics-informed neural networks in fluid simulations: Pitfalls and frustration[R]. Austin, Texas: The 21st Python in Science Conference, 2022.
[33] DEGEN D, CAVIEDES-VOULLIÈME D, BUITER S, et al. Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations[J]. Geoscientific Model Development, 2023, 16(24): 7375-7409.
[34] QIN Z, JIANG A, FAULDER D, et al.Physics-guided deep learning for prediction of energy production from geothermal reservoirs[J]. Geothermics, 2024, 116: 102824.
[35] MANTICA S, COMINELLI A, MANTICA G.Combining global and local optimization techniques for automatic history matching production and seismic data[J]. SPE Journal, 2002, 7(2): 123-130.
[36] MASCHIO C, SCHIOZER D J.Bayesian history matching using artificial neural network and Markov Chain Monte Carlo[J]. Journal of Petroleum Science and Engineering, 2014, 123: 62-71.
[37] ZHANG Y F, OLIVER D S.History matching using the ensemble Kalman filter with multiscale parameterization: A field case study[J]. SPE Journal, 2010, 16(2): 307-317.
[38] GOMEZ S, GOSSELIN O, BARKER J W.Gradient-based history matching with a global optimization method[J]. SPE Journal, 2001, 6(2): 200-208.
[39] 闫霞, 李阳, 姚军, 等. 基于流线EnKF油藏自动历史拟合[J]. 石油学报, 2011, 32(3): 495-499.
YAN Xia, LI Yang, YAO Jun, et al.Automatic history matching of reservoirs using the streamline-based EnKF method[J]. Acta Petrolei Sinica, 2011, 32(3): 495-499.
[40] 王鸣川, 段太忠, 孙红军, 等. 油藏自动历史拟合研究进展[J]. 科技导报, 2016, 34(18): 236-245.
WANG Mingchuan, DUAN Taizhong, SUN Hongjun, et al.Research progress in reservoir automatic history matching[J]. Science & Technology Review, 2016, 34(18): 236-245.
[41] CHEN Y, OLIVER D S.Ensemble-based closed-loop optimization applied to Brugge field[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(1): 56-71.
[42] LEE K, JEONG H, JUNG S, et al.Improvement of ensemble smoother with clustered covariance for channelized reservoirs[J]. Energy Exploration & Exploitation, 2013, 31(5): 713-726.
[43] COSTA L A N, MASCHIO C, JOSÉ SCHIOZER D. Application of artificial neural networks in a history matching process[J]. Journal of Petroleum Science and Engineering, 2014, 123: 30-45.
[44] NASRALLA R A, DAOUD A M, FATTAH K A, et al.Fast and efficient sensitivity calculation using adjoint method for three-phase field-scale history matching[J]. Journal of Petroleum Science and Engineering, 2011, 77(3/4): 338-350.
[45] 刘文岭, 韩大匡. 数字孪生油气藏: 智慧油气田建设的新方向[J]. 石油学报, 2022, 43(10): 1450-1461.
LIU Wenling, HAN Dakuang.Digital twin system of oil and gas reservoirs: A new direction for smart oil and gas field construction[J]. Acta Petrolei Sinica, 2022, 43(10): 1450-1461.
[46] DUEY R. Closing the loop[EB/OL]. (2017-08-01)[2024-05-10]. https://www.hartenergy.com/exclusives/closing-loop-176611.
[47] 梁旭. 微地震数据约束的干热岩人工裂隙结构特征示踪反演方法体系研究与应用[D]. 长春: 吉林大学, 2023.
LIANG Xu.Research and application of micro-seismicity-constraint tracer test data inversion methodology system for hydraulically enhanced fracture network characterization in the hot dry rock[D]. Changchun: Jilin University, 2023.
[48] KAMILA Z, KAYA E, ZARROUK S J.Reinjection in geothermal fields: An updated worldwide review 2020[J]. Geothermics, 2021, 89: 101970.
[49] 段云星. 干热岩地热资源开采井网优化数值模拟研究[D]. 北京: 中国地质大学(北京), 2017.
DUAN Yunxing.Numerical simulation of well pattern optimization for hot dry rock geothermal resources exploitation[D]. Beijing: China University of Geosciences (Beijing), 2017.
[50] LIU G, WANG G, ZHAO Z, et al.A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China[J]. Renewable Energy, 2020, 155: 484-499.
[51] POLLACK A, MUKERJI T.Accounting for subsurface uncertainty in enhanced geothermal systems to make more robust techno-economic decisions[J]. Applied Energy, 2019, 254: 113666.
[52] WILLEMS C J L, NICK H M, GOENSE T, et al. The impact of reduction of doublet well spacing on the Net Present Value and the life time of fluvial Hot Sedimentary Aquifer doublets[J]. Geothermics, 2017, 68: 54-66.
[53] CHEN M, TOMPSON A F B, MELLORS R J, et al. An efficient optimization of well placement and control for a geothermal prospect under geological uncertainty[J]. Applied Energy, 2015, 137: 352-363.
[54] WANG J, ZHAO Z, LIU G, et al.A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm[J]. Energy, 2022, 254(part C): 124427.
[55] SONG G F, SONG X Z, LI G S, et al.An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system[J]. Renewable Energy, 2021, 172: 1233-1249.
[56] YANG R, WANG Y, SONG G, et al.Fracturing and thermal extraction optimization methods in enhanced geothermal systems[J]. Advances in Geo-Energy Research, 2023, 9: 136-140.
[57] 宋国锋. 干热岩EGS循环注采多场耦合机制及取热性能优化[D]. 北京: 中国石油大学(北京), 2023.
SONG Guofeng.Multi-physics coupling mechanism and production optimization for the heat extraction from enhanced geothermal system of hot dry rock[D]. Beijing: China University of Petroleum (Beijing), 2023.
[58] XU F, SONG X, LI S, et al.A multi-objective optimization and multi-attribute decision-making analysis for technical-thermodynamic- economic evaluation considering the rock damage on production performance of hot dry rock geothermal resources[J]. Applied Thermal Engineering, 2024, 241: 122350.
[59] SAMIN M Y, FARAMARZI A, JEFFERSON I, et al.A hybrid optimization approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs[J]. Renewable Energy, 2019, 134: 379-389.
[60] ZHANG X, HUANG Z, LEI Q H, et al.Improving heat extraction performance of enhanced geothermal systems: Insights from critical fracture network parameter and multi-objective optimization method[J]. Applied Thermal Engineering, 2022, 213: 118671.
[61] 王佳铖, 陈进帆, 赵志宏, 等. 基于机器学习的地热采灌方案优化方法[J]. 科技导报, 2022, 40(20): 93-100.
WANG Jiacheng, CHEN Jinfan, ZHAO Zhihong, et al.Optimizing development parameters of geothermal energy using machine learning technique[J]. Science & Technology Review, 2022, 40(20): 93-100.
[62] 石宇. 多分支井循环二氧化碳开采地热机理与参数研究[D]. 北京: 中国石油大学(北京), 2020.
SHI Yu.Study on mechanism and parameters of geothermal exploitation using multilateral wells with CO2 as working fluid[D]. Beijing: China University of Petroleum (Beijing), 2020.
[63] 李帅, 刘明言, 马永丽. 基于BP人工神经网络预测地热井中流体的结垢位置[J]. 化工进展, 2022, 41(11): 5761-5770.
LI Shuai, LIU Mingyan, MA Yongli.Prediction of scaling location of fluid in geothermal well based on BP artificial neural network[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5761-5770.
[64] SERCEL. Sercel launches its first DAS seismic solution, SigmaWave[EB/OL]. (2019-03-20)[2024-05-20]. https://www.sercel. com/en/news/sercel-launches-its-first-das-seismic-solution-sigmawave.
[65] 张吉雄, 汪集暘, 周楠, 等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报, 2022, 44(10): 1682-1693.
ZHANG Jixiong, WANG Jiyang, ZHOU Nan, et al.Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering, 2022, 44(10): 1682-1693.
[66] 刘修善, 侯绪田, 涂玉林, 等. 电磁随钻测量技术现状及发展趋势[J]. 石油钻探技术, 2006, 34(5): 4-9.
LIU Xiushan, HOU Xutian, TU Yulin, et al.Development of electromagnetic measurement while drilling[J]. Petroleum Drilling Techniques, 2006, 34(5): 4-9.
[67] 贾梦之, 耿艳峰, 闫宏亮, 等. 高速泥浆脉冲数据传输技术综述[J]. 仪器仪表学报, 2018, 39(12): 160-170.
JIA Mengzhi, GENG Yanfeng, YAN Hongliang, et al.Review of high-speed mud pulse telemetry technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 160-170.
[68] 辛磊, 刘新星, 张斌. 遥感影像地表温度反演与地热资源预测: 以石家庄地区为例[J]. 地质力学学报, 2021, 27(1): 40-51.
XIN Lei, LIU Xinxing, ZHANG Bin.Land surface temperature retrieval and geothermal resources prediction by remote sensing image: A case study in the Shijiazhuang area, Hebei Province[J]. Journal of Geomechanics, 2021, 27(1): 40-51.
[69] REN Y Q, KONG Y L, PANG Z H, et al.A comprehensive review of tracer tests in enhanced geothermal systems[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113393.
[70] 殷亚楠. 大数据在智能油田中的应用探讨[J]. 网络安全技术与应用, 2022(3): 112-113.
YIN Yanan.Exploration of the application of big data in intelligent oilfield[J]. Network Security Technology & Application, 2022(3): 112-113.
[71] 张凯, 赵兴刚, 张黎明, 等. 智能油田开发中的大数据及智能优化理论和方法研究现状及展望[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 28-38.
ZHANG Kai, ZHAO Xinggang, ZHANG Liming, et al.Current status and prospect for the research and application of big data and intelligent optimization methods in oilfield development[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(4): 28-38.
[72] 韩书婷, 曹于勤, 王炳国. 大数据在智能油田中的应用[J]. 信息技术与标准化, 2019(3): 63-66.
HAN Shuting, CAO Yuqin, WANG Bingguo.Big data application in intelligent oilfield[J]. Information Technology & Standardization, 2019(3): 63-66.
[73] 马建文, 秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
MA Jianwen, QIN Sixian.Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science, 2012, 27(7): 747-757.
[74] EMERICK A A, REYNOLDS A C.Ensemble smoother with multiple data assimilation[J]. Computers & Geosciences, 2013, 55: 3-15.
[75] 杨兆发. CCUS封存环境CO2泄漏监测及其数据融合算法研究[D]. 淮南: 安徽理工大学, 2022.
YANG Zhaofa.Research on CO2 leakage monitoring and its data fusion algorithm in CCUS storage environment[D]. Huainan: Anhui University of Science and Technology, 2022.
[76] YUAN Q Q, SHEN H F, LI T W, et al.Deep learning in environmental remote sensing: Achievements and challenges[J]. Remote Sensing of Environment, 2020, 241: 111716.
[77] 湛传俊. 基于数据融合及深度学习的含水层岩性结构识别[D]. 长春: 吉林大学, 2023.
ZHAN Chuanjun.Identification of aquifer facies structures integrating data fusion and deep learning[D]. Changchun: Jilin University, 2023.
[78] 孙上斐, 邹乐乐. 基于生命周期分析(LCA)方法的地热发电环境影响比较研究[J]. 科技促进发展, 2022, 18(1): 31-38.
SUN Shangfei, ZOU Lele.Comparative research on the environmental impact of geothermal power generation based on life cycle assessment[J]. Science & Technology for Development, 2022, 18(1): 31-38.
[79] 冯硕, 张艺耀, 李进, 等. 渤海油田远程无线智能注水工艺技术及应用[J]. 石油机械, 2021, 49(11): 79-83.
FEN Shuo, ZHANG Yiyao, LI Jin, et al.Remote wireless intelligent water injection technology and its application in Bohai Oilfield[J]. China Petroleum Machinery, 2021, 49(11): 79-83.
[80] MA H Y, YU C G, DONG L L, et al.Review of intelligent well technology[J]. Petroleum, 2020, 6(3): 226-233.
[81] KOROVIN I S, TKACHENKO M G.Intelligent oilfield model[J]. Procedia Computer Science, 2016, 101: 300-303.
[82] HUANG Z, LI Y, PENG Y, et al.Study of the intelligent completion system for Liaohe Oil Field[J]. Procedia Engineering, 2011, 15: 739-746.
Options
Outlines

/