预出版日期: 2024-09-18
Based on the analyses of the core, cast thin section, physical property, CT, wireline loggings, well tests and seismic data, taking the Lower Cretaceous Yamama Formation in Oilfield A of the Central Arabian Basin as an example, the sedimentation and diagenesis characteristics and favorable reservoir distribution in semi-restricted carbonate ramp are clarified. The results show that semi-restricted carbonate ramp is enriched with Algae, Benthic foraminifera, Bivalve, Bacinella, and peloids, and is characterized by diverse low-energy and shallow-water lithofacies. The depositional environment of the Yamama Formation at early stage is dominated by open shelf, and then is dominated by large scale lagoon, locally being grain shoal, patchy reef, back shoal and tidal flat. There are three sequences in the Yamama Formation, namely I, II, and III, from bottom to top. During the regression cycle, the sequence I is dominated by cementation, the sequence II by dissolution, and the sequence III by alternating cementation and dissolution. The reservoirs are composed of packstone, wackstone and bindstone, with varying lithological sequence laterally which is difficult to be correlated. The reservoirs are porous, with the space contributed by micropores, moldic pores, and skeletal pores, as well as less primary intergranular pores, corresponding to medium- and micro-throats. The physical properties generally exhibit low to medium porosity, and low to ultra-low permeability. The medium-high permeability reservoirs are underdeveloped. It is found that the development of favorable reservoir in semi-restricted carbonate ramp are controlled by high-energy sedimentation locally, soluble bioclastic enrichment, and intense dissolution. Local high-energy grain shoals and patchy reef contain primary intergranular pores with no intense cementation, and they are important facies of favorable reservoirs in semi-restricted carbonate ramp. Low- to medium-energy facies such as lagoon and back shoal are rich in soluble bioclastics such as Algae and Bacinella. The bioclastics were intensely dissolved, forming a large number of moldic pores and skeletal pores, which effectively improved the reservoir physical properties, thus facilitating the formation of large-scale favorable reservoirs. The favorable reservoirs of the Yamama Formation in Oilfield A are mainly distributed in the north-central anticline axis of YA member and YB member.