阅读排行

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部
Please wait a minute...
  • 全选
    |
  • LIU He, REN Yili, LI Xin, DENG Yue, WANG Yongtao, CAO Qianwen, DU Jinyang, LIN Zhiwei, WANG Wenjie
    Petroleum Exploration and Development. 2024, 51(4): 1049-1065. https://doi.org/10.1016/S1876-3804(24)60524-0

    This article elucidates the concept of large model technology, summarizes the research status of large model technology both domestically and internationally, provides an overview of the application status of large models in vertical industries, outlines the challenges and issues confronted in applying large models in the oil and gas sector, and offers prospects for the application of large models in the oil and gas industry. The existing large models can be briefly divided into three categories: large language models, visual large models, and multimodal large models. The application of large models in the oil and gas industry is still in its infancy. Based on open-source large language models, some oil and gas enterprises have released large language model products using methods like fine-tuning and retrieval augmented generation. Scholars have attempted to develop scenario-specific models for oil and gas operations by using visual/multimodal foundation models. A few researchers have constructed pre-trained foundation models for seismic data processing and interpretation, as well as core analysis. The application of large models in the oil and gas industry faces challenges such as current data quantity and quality being difficult to support the training of large models, high research and development costs, and poor algorithm autonomy and control. The application of large models should be guided by the needs of oil and gas business, taking the application of large models as an opportunity to improve data lifecycle management, enhance data governance capabilities, promote the construction of computing power, strengthen the construction of “artificial intelligence + energy” composite teams, and boost the autonomy and control of large model technology.

  • LI Yang, ZHU Yangwen, LI Zongyang, JIANG Tingxue, XUE Zhaojie, SHEN Ziqi, XIAO Pufu, YU Hongmin, CHENG Ziyan, ZHAO Qingmin, ZHANG Qingfu
    Petroleum Exploration and Development. 2024, 51(4): 981-992. https://doi.org/10.1016/S1876-3804(24)60519-7

    Laboratory experiments, numerical simulations and fracturing technology were combined to address the problems in shale oil recovery by CO2 injection. The laboratory experiments were conducted to investigate the displacement mechanisms of shale oil extraction by CO2 injection, and the influences of CO2 pre-pad on shale mechanical properties. Numerical simulations were performed about influences of CO2 pre-pad fracturing and puff-n-huff for energy replenishment on the recovery efficiency. The findings obtained were applied to the field tests of CO2 pre-pad fracturing and single well puff-n-huff. The results show that the efficiency of CO2 puff-n-huff is affected by micro- and nano-scale effect, kerogen, adsorbed oil and so on, and a longer soaking time in a reasonable range leads to a higher exploitation degree of shale oil. In the "injection + soaking" stage, the exploitation degree of heavy hydrocarbons is enhanced by CO2 through its effects of solubility-diffusion and mass-transfer. In the "huff" stage, crude oil in large pores is displaced by CO2 to surrounding larger pores or bedding fractures and finally flows to the production well. The injection of CO2 pre-pad is conducive to keeping the rock brittle and reducing the fracture breakdown pressure, and the CO2 is liable to filter along the bedding surface, thereby creating a more complex fracture. Increasing the volume of CO2 pre-pad can improve the energizing effect, and enhance the replenishment of formation energy. Moreover, the oil recovery is more enhanced by CO2 huff-n-puff with the lower shale matrix permeability, the lower formation pressure, and the larger heavy hydrocarbon content. The field tests demonstrate a good performance with the pressure maintained well after CO2 pre-pad fracturing, the formation energy replenished effectively after CO2 huff-n-puff in a single well, and the well productivity improved.

  • MCMAHON T P, LARSON T E, ZHANG T, SHUSTER M
    Petroleum Exploration and Development. 2024, 51(4): 925-948. https://doi.org/10.1016/S1876-3804(24)60516-1

    We present a systematic summary of the geological characteristics, exploration and development history and current state of shale oil and gas in the United States. The hydrocarbon-rich shales in the major shale basins of the United States are mainly developed in six geological periods: Middle Ordovician, Middle-Late Devonian, Early Carboniferous (Middle-Late Mississippi), Early Permian, Late Jurassic, and Late Cretaceous (Cenomanian-Turonian). Depositional environments for these shales include intra-cratonic basins, foreland basins, and passive continental margins. Paleozoic hydrocarbon-rich shales are mainly developed in six basins, including the Appalachian Basin (Utica and Marcellus shales), Anadarko Basin (Woodford Shale), Williston Basin (Bakken Shale), Arkoma Basin (Fayetteville Shale), Fort Worth Basin (Barnett Shale), and the Wolfcamp and Leonardian Spraberry/Bone Springs shale plays of the Permian Basin. The Mesozoic hydrocarbon-rich shales are mainly developed on the margins of the Gulf of Mexico Basin (Haynesville and Eagle Ford) or in various Rocky Mountain basins (Niobrara Formation, mainly in the Denver and Powder River basins). The detailed analysis of shale plays reveals that the shales are different in facies and mineral components, and "shale reservoirs" are often not shale at all. The United States is abundant in shale oil and gas, with the in-place resources exceeding 0.246×1012 t and 290×1012 m3, respectively. Before the emergence of horizontal well hydraulic fracturing technology to kick off the "shale revolution", the United States had experienced two decades of exploration and production practices, as well as theory and technology development. In 2007-2023, shale oil and gas production in the United States increased from approximately 11.2×104 tons of oil equivalent per day (toe/d) to over 300.0×104 toe/d. In 2017, the shale oil and gas production exceeded the conventional oil and gas production in the country. In 2023, the contribution from shale plays to the total U.S. oil and gas production remained above 60%. The development of shale oil and gas has largely been driven by improvements in drilling and completion technologies, with much of the recent effort focused on “cube development” or “co-development”. Other efforts to improve productivity and efficiency include refracturing, enhanced oil recovery, and drilling of “U-shaped” wells. Given the significant resources base and continued technological improvements, shale oil and gas production will continue to contribute significant volumes to total U.S. hydrocarbon production.

  • ANJOS Sylvia M C, SOMBRA Cristiano L, SPADINI Adali R
    Petroleum Exploration and Development. 2024, 51(4): 912-924. https://doi.org/10.1016/S1876-3804(24)60515-X

    The Santos Basin in Brazil has witnessed significant oil and gas discoveries in deepwater pre-salt since the 21st century. Currently, the waters in eastern Brazil stand out as a hot area of deepwater exploration and production worldwide. Based on a review of the petroleum exploration and production history in Brazil, the challenges, researches and practices, strategic transformation, significant breakthroughs, and key theories and technologies for exploration from onshore to offshore and from shallow waters to deep-ultra-deep waters and then to pre-salt strata are systematically elaborated. Within 15 years since its establishment in 1953, Petrobras explored onshore Paleozoic cratonic and marginal rift basins, and obtained some small to medium petroleum discoveries in fault-block traps. In the 1970s, Petrobras developed seismic exploration technologies and several hydrocarbon accumulation models, for example, turbidite sandstones, allowing important discoveries in shallow waters, e.g. the Namorado Field and Enchova fields. Guided by these models/technologies, significant discoveries, e.g. the Marlim and Roncador fields, were made in deepwater post-salt in the Campos Basin. In the early 21st century, the advancements in theories and technologies for pre-salt petroleum system, carbonate reservoirs, hydrocarbon accumulation and nuclear magnetic resonance (NMR) logging stimulated a succession of valuable discoveries in the Lower Cretaceous lacustrine carbonates in the Santos Basin, including the world-class ultra-deepwater super giant fields such as Tupi (Lula), Mero and Buzios. Petroleum development in complex deep water environments is extremely challenging. By establishing the Technological Capacitation Program in Deep Waters (PROCAP), Petrobras developed and implemented key technologies including managed pressure drilling (MPD) with narrow pressure window, pressurized mud cap drilling (PMCD), multi-stage intelligent completion, development with Floating Production Storage and Offloading units (FPSO), and flow assurance, which remarkably improved the drilling, completion, field development and transportation efficiency and safety. Additionally, under the limited FPSO capacity, Petrobras promoted the world-largest CCUS-EOR project, which contributed effectively to the reduction of greenhouse gas emissions and the enhancement of oil recovery. Development and application of these technologies provide valuable reference for deep and ultra-deepwater petroleum exploration and production worldwide. The petroleum exploration in Brazil will consistently focus on ultra-deep water pre-salt carbonates and post-salt turbidites, and seek new opportunities in Paleozoic gas. Technical innovation and strategic cooperation will be held to promote the sustainable development of Brazil's oil and gas industry.

  • DOU Lirong, WEN Zhixin, WANG Zhaoming, HE Zhengjun, SONG Chengpeng, CHEN Ruiyin, YANG Xiaofa, LIU Xiaobing, LIU Zuodong, CHEN Yanyan
    Petroleum Exploration and Development. 2024, 51(4): 949-962. https://doi.org/10.1016/S1876-3804(24)60517-3

    In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin, based on comprehensive utilization of geological, seismic, and core data, and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography, it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms: inter-depression fault-uplift and intra-depression fault-high. The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions, and are built on half- and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages. The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed; intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones, built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts, and only the BVE microbial limestones are developed. Both types of limestones formed into mound-shoal bodies, that have the characteristics of large reservoir thickness and good physical properties. Based on the dissection of large pre-salt oil fields discovered in the Santos Basin, it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps, surrounded by high-quality lacustrine and lagoon source rocks at the periphery, and efficiently sealed by thick high-quality evaporite rocks above, forming the optimal combination of source, reservoir and cap in the form of “lower generation, middle storage, and upper cap”, with a high degree of oil and gas enrichment. It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system, and they are all filled to the spill-point. The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones, as well as intra-depression fault-high isolated platforms in the central depression zone. The result not only provides an important basis for the advanced selection of potential play fairways, bidding of new blocks, and deployment of awarded exploration blocks in the Santos Basin, but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.

  • DAI Jinxing, DONG Dazhong, NI Yunyan, GONG Deyu, HUANG Shipeng, HONG Feng, ZHANG Yanling, LIU Quanyou, WU Xiaoqi, FENG Ziqi
    Petroleum Exploration and Development. 2024, 51(4): 767-779. https://doi.org/10.1016/S1876-3804(24)60505-7

    Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China, this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs, and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs. In the United States, the proportion of tight sandstone gas in the total gas production declined from 20%-35% in 2008 to about 8% in 2023, and the shale gas production was 8 310×108 m3 in 2023, about 80% of the total gas production, in contrast to the range of 5%-17% during 2000-2008. In China, the proportion of tight sandstone gas in the total gas production increased from 16% in 2010 to 28% or higher in 2023. China began to produce shale gas in 2012, with the production reaching 250×108 m3 in 2023, about 11% of the total gas production of the country. The distribution of shale gas reservoirs is continuous. According to the fault presence, fault displacement and gas layer thickness, the continuous shale gas reservoirs can be divided into two types: continuity and intermittency. Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous, but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous. According to the trap types, tight sandstone gas reservoirs can be divided into lithologic, anticlinal, and synclinal reservoirs. The tight sandstone gas is coal-derived in typical basins in China and Egypt, but oil-type gas in typical basins in the United States and Oman.

  • MA Yongsheng, CAI Xunyu, LI Maowen, LI Huili, ZHU Dongya, QIU Nansheng, PANG Xiongqi, ZENG Daqian, KANG Zhijiang, MA Anlai, SHI Kaibo, ZHANG Juntao
    Petroleum Exploration and Development. 2024, 51(4): 795-812. https://doi.org/10.1016/S1876-3804(24)60507-0

    Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied. (1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types: fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs. (2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates. (3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front. Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging. (4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.

  • SUN Jinsheng, YANG Jingbin, BAI Yingrui, LYU Kaihe, LIU Fengbao
    Petroleum Exploration and Development. 2024, 51(4): 1022-1034. https://doi.org/10.1016/S1876-3804(24)60522-7

    The research progress of deep and ultra-deep drilling fluid technology systematically reviewed, the key problems existing are analyzed, and the future development direction is proposed. In view of the high temperature, high pressure and high stress, fracture development, wellbore instability, drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling, scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology, high-temperature resistant oil-based/synthetic drilling fluid technology, drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology. However, there are still some key problems such as insufficient resistance to high temperature, high pressure and high stress, wellbore instability and serious lost circulation. Therefore, the development direction of deep and ultra-deep drilling fluid technology in the future is proposed: (1) The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability, improving rheological properties, strengthening filtration control and improving compatibility with formation. (2) The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer, rheological regulator and related supporting technologies. (3) The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials, and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms. (4) The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology, the research and application of high-performance plugging materials, the exploration of diversified plugging techniques and methods, and the improvement of environmental protection and production safety awareness.

  • GUO Xusheng, HUANG Renchun, ZHANG Dianwei, LI Shuangjian, SHEN Baojian, LIU Tianjia
    Petroleum Exploration and Development. 2024, 51(4): 852-869. https://doi.org/10.1016/S1876-3804(24)60511-2
    Crossref(1)

    Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin, SW China, the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements, especially the source rock. The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed, the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized, and the favorable exploration targets are proposed. Under the control of multiple extensional-convergent tectonic cycles, the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks, and can be divided into the Cambrian, Silurian and Permian whole petroleum systems. These whole petroleum systems present mainly independent hydrocarbon accumulation, containing natural gas of affinity individually. Locally, large fault zones run through multiple whole petroleum systems, forming a fault-controlled complex whole petroleum system. The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation, marginal platform facies-controlled gas reservoirs, and intra-platform fault- and facies-controlled gas reservoirs is common in the whole petroleum system, with a stereoscopic accumulation and orderly distribution pattern. High-quality source rock is fundamental to the formation of large gas fields, and natural gas in a whole petroleum system is generally enriched near and within the source rocks. The development and maintenance of large-scale reservoirs are essential for natural gas enrichment, multiple sources, oil and gas transformation, and dynamic adjustment are the characteristics of marine petroleum accumulation, and good preservation conditions are critical to natural gas accumulation. Large-scale marginal-platform reef-bank facies zones, deep shale gas, and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.

  • HE Wenyuan, SUN Ningliang, ZHANG Jinyou, ZHONG Jianhua, GAO Jianbo, SHENG Pengpeng
    Petroleum Exploration and Development. 2024, 51(5): 1083-1096. https://doi.org/10.1016/S1876-3804(25)60527-1

    Based on the observation and analysis of cores and thin sections, and combined with cathodoluminescence, laser Raman, fluid inclusions, and in-situ LA-ICP-MS U-Pb dating, the genetic mechanism and petroleum geological significance of calcite veins in shales of the Cretaceous Qingshankou Formation in the Songliao Basin were investigated. Macroscopically, the calcite veins are bedding parallel, and show lenticular, S-shaped, cone-in-cone and pinnate structures. Microscopically, they can be divided into syntaxial blocky or columnar calcite veins and antitaxial fibrous calcite veins. The aqueous fluid inclusions in blocky calcite veins have a homogenization temperature of 132.5-145.1 °C, the in-situ U-Pb dating age of blocky calcite veins is (69.9±5.2) Ma, suggesting that the middle maturity period of source rocks and the conventional oil formation period in the Qingshankou Formation are the sedimentary period of Mingshui Formation in Late Cretaceous. The aqueous fluid inclusions in fibrous calcite veins with the homogenization temperature of 141.2-157.4 °C, yields the U-Pb age of (44.7±6.9) Ma, indicating that the middle-high maturity period of source rocks and the Gulong shale oil formation period in the Qingshankou Formation are the sedimentary period of Paleocene Yi'an Formaiton. The syntaxial blocky or columnar calcite veins were formed sensitively to the diagenetic evolution and hydrocarbon generation, mainly in three stages (fracture opening, vein-forming fluid filling, and vein growth). Tectonic extrusion activities and fluid overpressure are induction factors for the formation of fractures, and vein-forming fluid flows mainly as diffusion in a short distance. These veins generally follow a competitive growth mode. The antitaxial fibrous calcite veins were formed under the driving of the force of crystallization in a non-competitive growth environment. It is considered that the calcite veins in organic-rich shale of the Qingshankou Formation in the study area has important implications for local tectonic activities, fluid overpressure, hydrocarbon generation and expulsion, and diagenesis-hydrocarbon accumulation dating of the Songliao Basin.

  • JIA Chengzao, PANG Xiongqi, SONG Yan
    Petroleum Exploration and Development. 2024, 51(4): 780-794. https://doi.org/10.1016/S1876-3804(24)60506-9

    This paper expounds the basic principles and structures of the whole petroleum system to reveal the pattern of conventional oil/gas - tight oil/gas - shale oil/gas sequential accumulation and the hydrocarbon accumulation models and mechanisms of the whole petroleum system. It delineates the geological model, flow model, and production mechanism of shale and tight reservoirs, and proposes future research orientations. The main structure of the whole petroleum system includes three fluid dynamic fields, three types of oil and gas reservoirs/resources, and two types of reservoir-forming processes. Conventional oil/gas, tight oil/gas, and shale oil/gas are orderly in generation time and spatial distribution, and sequentially rational in genetic mechanism, showing the pattern of sequential accumulation. The whole petroleum system involves two categories of hydrocarbon accumulation models: hydrocarbon accumulation in the detrital basin and hydrocarbon accumulation in the carbonate basin/formation. The accumulation of unconventional oil/gas is self-containment, which is microscopically driven by the intermolecular force (van der Waals force). The unconventional oil/gas production has proved that the geological model, flow model, and production mechanism of shale and tight reservoirs represent a new and complex field that needs further study. Shale oil/gas must be the most important resource replacement for oil and gas resources of China. Future research efforts include: (1) the characteristics of the whole petroleum system in carbonate basins and the source-reservoir coupling patterns in the evolution of composite basins; (2) flow mechanisms in migration, accumulation, and production of shale oil/gas and tight oil/gas; (3) geological characteristics and enrichment of deep and ultra-deep shale oil/gas, tight oil/gas and coalbed methane; (4) resource evaluation and new generation of basin simulation technology of the whole petroleum system; (5) research on earth system - earth organic rock and fossil fuel system - whole petroleum system.

  • ZHANG Shuichang, WANG Huajian, SU Jin, WANG Xiaomei, HE Kun, LIU Yuke
    Petroleum Exploration and Development. 2024, 51(4): 870-885. https://doi.org/10.1016/S1876-3804(24)60512-4

    Taking the Paleozoic of the Sichuan and Tarim basins in China as example, the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated. By discussing the development of “source-reservoir-seal” controlled by the breakup and assembly of supercontinents and regional tectonic movements, and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system, Both the South China and Tarim blocks passed through the intertropical convergence zone (ITCZ) of the low-latitude Hadley Cell twice during their drifts, and formed hydrocarbon source rocks with high quality. It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks, reservoirs, and seals in the Sichuan and Tarim basins, forming multiple petroleum systems in the Ediacaran-Cambrian, Cambrian-Ordovician, Cambrian-Permian and Permian-Triassic strata. The matching degree of source-reservoir-seal, the type of organic matter in source rocks, the deep thermal regime of basin, and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas. Three types of oil and gas enrichment models are formed, including near-source accumulation in platform marginal zones, distant-source accumulation in high-energy beaches through faults, and three-dimensional accumulation in strike-slip fault zones, which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin.

  • ZHAO Wenzhi, LIU Wei, BIAN Congsheng, LIU Xianyang, PU Xiugang, LU Jiamin, LI Yongxin, LI Junhui, LIU Shiju, GUAN Ming, FU Xiuli, DONG Jin
    Petroleum Exploration and Development. 2025, 52(1): 1-16. https://doi.org/10.1016/S1876-3804(25)60001-2

    In addition to the organic matter type, abundance, thermal maturity, and shale reservoir space, the preservation conditions of source rocks play a key factor in affecting the quantity and quality of retained hydrocarbons in source rocks of lacustrine shale, yet this aspect has received little attention. This paper, based on the case analysis, explores how preservation conditions influence the enrichment of mobile hydrocarbons in shale oil. Research showns that good preservation conditions play three key roles. (1) Ensure the retention of sufficient light hydrocarbons (C1-C13), medium hydrocarbons (C14-C25) and small molecular aromatics (including 1-2 benzene rings) in the formation, which enhances the fluidity and flow of shale oil; (2) Maintain a high energy field (abnormally high pressure), thus facilitating the maximum outflow of shale oil; (3) Ensure that the retained hydrocarbons have the miscible flow condition of multi-component hydrocarbons (light hydrocarbons, medium hydrocarbons, heavy hydrocarbons, and heteroatomic compounds), so that the heavy hydrocarbons (∑C25+) and heavy components (non-hydrocarbons and asphaltenes) have improved fluidity and maximum flow capacity. In conclusion, in addition to the advantages of organic matter type, abundance, thermal maturity, and reservoir space, good preservation conditions of shale layers are essential for the formation of economically viable shale oil reservoirs, which should be incorporated into the evaluation criteria of shale oil-rich areas/segments and considered a necessary factor when selecting favorable exploration targets.

  • GAO Deli, XIAN Baoan, BI Yansen
    Petroleum Exploration and Development. 2024, 51(4): 1009-1021. https://doi.org/10.1016/S1876-3804(24)60521-5

    Aiming at the problems of large load of rotation drive system, low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well, a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed. The technical principle of this method is revealed, supporting tools such as the differential rotation transducer, composite rotary steering system and the hanger are designed, and technological process is optimized. A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established. These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling (MWD) and positive displacement motor (PDM), and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM. Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin, the extension limit of horizontal drilling with double tubular strings is calculated. Compared with the conventional liner drilling method, the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly. The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells.

  • QIN Jianhua, XIAN Chenggang, ZHANG Jing, LIANG Tianbo, WANG Wenzhong, LI Siyuan, ZHANG Jinning, ZHANG Yang, ZHOU Fujian
    Petroleum Exploration and Development. 2025, 52(1): 245-257. https://doi.org/10.1016/S1876-3804(25)60018-8

    In order to identify the development characteristics of fracture network in tight conglomerate reservoir of Mahu after hydraulic fracturing, a hydraulic fracturing test site was set up in the second and third members of Triassic Baikouquan Formation (T1b2 and T1b3) in Ma-131 well area, which learned from the successful experience of hydraulic fracturing test sites in North America (HFTS-1). Twelve horizontal wells and a high-angle coring well MaJ02 were drilled. The orientation, connection, propagation law and major controlling factors of hydraulic fractures were analyzed by comparing results of CT scans, imaging logs, direct observation of cores from Well MaJ02, and combined with tracer monitoring data. Results indicate that: (1) Two types of fractures have developed by hydraulic fracturing, i.e. tensile fractures and shear fractures. Tensile fractures are approximately parallel to the direction of the maximum horizontal principal stress, and propagate less than 50 m from perforation clusters. Shear fractures are distributed among tensile fractures and mainly in the strike-slip mode due to the induced stress field among tensile fractures, and some of them are in conjugated pairs. Overall, tensile fractures alternate with shear fractures, with shear fractures dominated and activated after tensile ones. (2) Tracer monitoring results indicate that communication between wells was prevalent in the early stage of production, and the static pressure in the fracture gradually decreased and the connectivity between wells reduced as production progressed. (3) Density of hydraulic fractures is mainly affected by the lithology and fracturing parameters, which is smaller in the mudstone than the conglomerate. Larger fracturing scale and smaller cluster spacing lead to a higher fracture density, which are important directions to improve the well productivity.

  • LIU Xianyang, LIU Jiangyan, WANG Xiujuan, GUO Qiheng, Lv Qiqi, YANG Zhi, ZHANG Yan, ZHANG Zhongyi, ZHANG Wenxuan
    Petroleum Exploration and Development. 2025, 52(1): 95-111. https://doi.org/10.1016/S1876-3804(25)60007-3

    Based on recent advancements in shale oil exploration within the Ordos Basin, this study presents a comprehensive investigation of the paleoenvironment, lithofacies assemblages and distribution, depositional mechanisms, and reservoir characteristics of shale oil of fine-grained sediment deposition in continental freshwater lacustrine basins, with a focus on the Chang 73 sub-member of Triassic Yanchang Formation. The research integrates a variety of exploration data, including field outcrops, drilling, logging, core samples, geochemical analyses, and flume simulation. The study indicates that: (1) The paleoenvironment of the Chang 73 deposition is characterized by a warm and humid climate, frequent monsoon events, and a large water depth of freshwater lacustrine basin. The paleogeomorphology exhibits an asymmetrical pattern, with steep slopes in the southwest and gentle slopes in the northeast, which can be subdivided into microgeomorphological units, including depressions and ridges in lakebed, as well as ancient channels. (2) The Chang 73 sub-member is characterized by a diverse array of fine-grained sediments, including very fine sandstone, siltstone, mudstone and tuff. These sediments are primarily distributed in thin interbedded and laminated arrangements vertically. The overall grain size of the sandstone predominantly falls below 62.5 μm, with individual layer thicknesses of 0.05-0.64 m. The deposits contain intact plant fragments and display various sedimentary structure, such as wavy bedding, inverse-to-normal grading sequence, and climbing ripple bedding, which indicating a depositional origin associated with density flows. (3) Flume simulation experiments have successfully replicated the transport processes and sedimentary characteristics associated with density flows. The initial phase is characterized by a density-velocity differential, resulting in a thicker, coarser sediment layer at the flow front, while the upper layers are thinner and finer in grain size. During the mid-phase, sliding water effects cause the fluid front to rise and facilitate rapid forward transport. This process generates multiple “new fronts”, enabling the long-distance transport of fine-grained sandstones, such as siltstone and argillaceous siltstone, into the center of the lake basin. (4) A sedimentary model primarily controlled by hyperpynal flows was established for the southwestern part of the basin, highlighting that the frequent occurrence of flood events and the steep slope topography in this area are primary controlling factors for the development of hyperpynal flows. (5) Sandstone and mudstone in the Chang 73 sub-member exhibit micro-and nano-scale pore-throat systems, shale oil is present in various lithologies, while the content of movable oil varies considerably, with sandstone exhibiting the highest content of movable oil. (6) The fine-grained sediment complexes formed by multiple episodes of sandstones and mudstones associated with density flow in the Chang 73 formation exhibit characteristics of “overall oil-bearing with differential storage capacity”. The combination of mudstone with low total organic carbon content (TOC) and siltstone is identified as the most favorable exploration target at present.

  • WANG Yanghua, RAO Ying, ZHAO Zhencong
    Petroleum Exploration and Development. 2024, 51(4): 886-896. https://doi.org/10.1016/S1876-3804(24)60513-6

    The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time, especially in the low frequency region. In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region, we have proposed a W transform method, in which the instantaneous frequency is introduced as a parameter into the linear transformation, and the analysis time window is constructed which matches the instantaneous frequency of the seismic data. In this paper, the W transform method is compared with the Wigner-Ville distribution (WVD), a typical nonlinear time-frequency analysis method. The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet, while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing, because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter. Therefore, the W transform can be benchmarked directly by the WVD method. We summarize the development of the W transform and three improved methods in recent years, and elaborate on the evolution of the standard W transform, the chirp-modulated W transform, the fractional-order W transform, and the linear canonical W transform. Through three application examples of W transform in fluvial sand body identification and reservoir prediction, it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.

  • ASADOLAHPOUR Seyed Reza, JIANG Zeyun, LEWIS Helen, MIN Chao
    Petroleum Exploration and Development. 2024, 51(5): 1301-1315. https://doi.org/10.1016/S1876-3804(25)60542-8

    This paper introduces a deep learning workflow to predict phase distributions within complex geometries during two-phase capillary-dominated drainage. We utilize subsamples from Computerized Tomography (CT) images of rocks and incorporate pixel size, interfacial tension, contact angle, and pressure as inputs. First, an efficient morphology-based simulator creates a diverse dataset of phase distributions. Then, two commonly used convolutional and recurrent neural networks are explored and their deficiencies are highlighted, particularly in capturing phase connectivity. Subsequently, we develop a Higher-Dimensional Vision Transformer (HD-ViT) that drains pores solely based on their size, with phase connectivity enforced as a post-processing step. This enables inference for images of varying sizes, resolutions, and inlet-outlet setup. After training on a massive dataset of over 9.5 million instances, HD-ViT achieves excellent performance. We demonstrate the accuracy and speed advantage of the model on new and larger sandstone and carbonate images. We further evaluate HD-ViT against experimental fluid distribution images and the corresponding Lattice-Boltzmann simulations, producing similar outcomes in a matter of seconds. In the end, we train and validate a 3D version of the model.

  • YOU Lijun, QIAN Rui, KANG Yili, WANG Yijun
    Petroleum Exploration and Development. 2025, 52(1): 208-218. https://doi.org/10.1016/S1876-3804(25)60015-2

    Static adsorption and dynamic damage experiments were carried out on typical 8# deep coal rock of the Carboniferous Benxi Formation in the Ordos Basin, NW China, to evaluate the adsorption capacity of hydroxypropyl guar gum and polyacrylamide as fracturing fluid thickeners on deep coal rock surface and the permeability damage caused by adsorption. The adsorption morphology of the thickener was quantitatively characterized by atomic force microscopy, and the main controlling factors of the thickener adsorption were analyzed. Meanwhile, the adsorption mechanism of the thickener was revealed by Zeta potential, Fourier infrared spectroscopy and X-ray photoelectron spectroscopy. The results show that the adsorption capacity of hydroxypropyl guar gum on deep coal surface is 3.86 mg/g, and the permeability of coal rock after adsorption decreases by 35.24%-37.01%. The adsorption capacity of polyacrylamide is 3.29 mg/g, and the permeability of coal rock after adsorption decreases by 14.31%-21.93%. The thickness of the thickener adsorption layer is positively correlated with the mass fraction of thickener and negatively correlated with temperature, and a decrease in pH will reduce the thickness of the hydroxypropyl guar gum adsorption layer and make the distribution frequency of the thickness of polyacrylamide adsorption layer more concentrated. Functional group condensation and intermolecular force are chemical and physical forces for adsorbing fracturing fluid thickener in deep coal rock. Optimization of thickener mass fraction, chemical modification of thickener molecular, oxidative thermal degradation of polymer and addition of desorption agent can reduce the potential damages on micro-nano pores and cracks in coal rock.

  • JIN Yan, LIN Botao, GAO Yanfang, PANG Huiwen, GUO Xuyang, SHENTU Junjie
    Petroleum Exploration and Development. 2025, 52(1): 157-169. https://doi.org/10.1016/S1876-3804(25)60011-5

    Considering the three typical phase-change related rock mechanics phenomena during drilling and production in oil and gas reservoirs, which include phase change of solid alkane-related mixtures upon heating, sand liquefaction induced by sudden pressure release of the over-pressured sand body, and formation collapse due to gasification of pore fillings from pressure reduction, this study first systematically analyzes the progress of theoretical understanding, experimental methods, and mathematical representation, then discusses the engineering application scenarios corresponding to the three phenomena and reveals the mechanical principles and application effectiveness. Based on these research efforts, the study further discusses the significant challenges, potential developmental trends, and research approaches that require urgent exploration. The findings disclose that various phase-related rock mechanics phenomena require specific experimental and mathematical methods that can produce multi-field coupling mechanical mechanisms, which will eventually instruct the control on resource exploitation, evaluation on disaster level, and analysis of formation stability. To meet the development needs of the principle, future research efforts should focus on mining more phase-change related rock mechanics phenomena during oil and gas resources exploitation, developing novel experimental equipment, and using techniques of artificial intelligence and digital twins to implement real-time simulation and dynamic visualization of phase-change related rock mechanics.

  • SUN Huanquan, WANG Haitao, YANG Yong, LYU Qi, ZHANG Feng, LIU Zupeng, LYU Jing, CHEN Tiancheng, JIANG Tingxue, ZHAO Peirong, WU Shicheng
    Petroleum Exploration and Development. 2024, 51(4): 993-1008. https://doi.org/10.1016/S1876-3804(24)60520-3

    By benchmarking with the iteration of drilling technology, fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and development difficulties of shale oil in the Jiyang continental rift lake basin, East China, the development technology system suitable for the geological characteristics of shale oil in continental rift lake basins has been primarily formed through innovation and iteration of the development, drilling and fracturing technologies. The technology system supports the rapid growth of shale oil production and reduces the development investment cost. By comparing it with the shale oil development technology in the United States, the prospect of the shale oil development technology iteration in continental rift lake basins is proposed. It is suggested to continuously strengthen the overall three-dimensional development, improve the precision level of engineering technology, upgrade the engineering technical indicator system, accelerate the intelligent optimization of engineering equipment, explore the application of complex structure wells, form a whole-process integrated quality management system from design to implementation, and constantly innovate the concept and technology of shale oil development, so as to promote the realization of extensive, beneficial and high-quality development of shale oil in continental rift lake basins.

  • SUN Longde, WANG Fenglan, BAI Xuefeng, FENG Zihui, SHAO Hongmei, ZENG Huasen, GAO Bo, WANG Yongchao
    Petroleum Exploration and Development. 2024, 51(4): 813-825. https://doi.org/10.1016/S1876-3804(24)60508-2

    A new pore type, nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy, energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC, Ro values, X-ray diffraction etc. in the Cretaceous Qingshankou Formation shale in the Songliao Basin, NE China. Such pore characteristics and evolution study show that: (1) Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates. Different from circular or oval organic pores discovered in other shales, a single organo-clay complex pore is square, rectangular, rhombic or slaty, with the pore diameter generally less than 200 nm. (2) With thermal maturity increasing, the elements (C, Si, Al, O, Mg, Fe, etc.) in organo-clay complex change accordingly, showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation. (3) At high thermal maturity, the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70% of total pore space. The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores. It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil. The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.

  • ZHAO Wenzhi, BIAN Congsheng, LI Yongxin, LIU Wei, QIN Bing, PU Xiugang, JIANG Jianlin, LIU Shiju, GUAN Ming, DONG Jin, SHEN Yutan
    Petroleum Exploration and Development. 2024, 51(4): 826-838. https://doi.org/10.1016/S1876-3804(24)60509-4

    Based on the production curves, changes in hydrocarbon composition and quantities over time, and production systems from key trial production wells in lacustrine shale oil areas in China, fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity. The concept of “component flow” for shale oil was proposed, and the formation mechanism and conditions of component flow were discussed. The research reveals findings in four aspects. First, a miscible state of light, medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles, which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents, such as heavy hydrocarbons, thereby decreasing shale oil viscosity and enhancing fluidity and outflows. Second, small-molecule aromatic hydrocarbons act as carriers for component flow, and the higher the content of gaseous and light hydrocarbons, the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt, thus increasing their plastic deformation ability and bringing about better component flow efficiency. Third, higher formation temperatures reduce the viscosity of heavy hydrocarbon components, such as wax, thereby improving their fluidity. Fourth, preservation conditions, formation energy, and production system play important roles in controlling the content of light hydrocarbon components, outflow rate, and forming stable “component flow”, which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil. The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.

  • LI Guoxin, ZHANG Shuichang, HE Haiqing, HE Xinxing, ZHAO Zhe, NIU Xiaobing, XIONG Xianyue, ZHAO Qun, GUO Xujie, HOU Yuting, ZHANG Lei, LIANG Kun, DUAN Xiaowen, ZHAO Zhenyu
    Petroleum Exploration and Development. 2024, 51(4): 897-911. https://doi.org/10.1016/S1876-3804(24)60514-8

    In recent years, great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar, Ordos and other basins in China. In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas, this paper defines the concept of "coal-rock gas" on the basis of previous studies, and systematically analyzes its characteristics of occurrence state, transport and storage form, differential accumulation, and development law. Coal-rock gas, geologically unlike coalbed methane in the traditional sense, occurs in both free and adsorbed states, with free state in abundance. It is generated and stored in the same set of rocks through short distance migration, occasionally with the accumulation from other sources. Moreover, coal rock develops cleat fractures, and the free gas accumulates differentially. The coal-rock gas reservoirs deeper than 2000 m are high in pressure, temperature, gas content, gas saturation, and free-gas content. In terms of development, similar to shale gas and tight gas, coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially, that is, the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered, so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop. According to buried depth, coal rank, pressure coefficient, reserves scale, reserves abundance and gas well production, the classification criteria and reserves/resources estimation method of coal-rock gas are presented. It is preliminarily estimated that the coal-rock gas in place deeper than 2 000 m in China exceeds 30×1012 m3, indicating an important strategic resource for the country. The Ordos, Sichuan, Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas. The paper summarizes the technical and management challenges and points out the research directions, laying a foundation for the management, exploration, and development of coal-rock gas in China.

  • XU Changgui, WU Keqiang, PEI Jianxiang, HU Lin
    Petroleum Exploration and Development. 2025, 52(1): 50-63. https://doi.org/10.1016/S1876-3804(25)60004-8
    Crossref(2)

    Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin, combined with seismic, logging, drilling, core, sidewall coring, geochemistry data, a systematic study is conducted on the source, reservoir-cap conditions, trap types, migration and accumulation characteristics, enrichment mechanisms, and reservoir formation models of ultra-deep water and ultra-shallow natural gas, taking the Lingshui 36-1 gas field as an example. (1) The genetic types of the ultra-deep water and ultra-shallow natural gas in the Qiongdongnan Basin include thermogenic gas and biogenic gas, and dominated by thermogenic gas. (2) The reservoirs are mainly composed of the Quaternary deep-water submarine fan sandstone. (3) The types of cap rocks include deep-sea mudstone, mass transport deposits mudstone, and hydrate-bearing formations. (4) The types of traps are mainly lithological, and also include structural- lithological traps. (5) The migration channels include vertical transport channels such as faults, gas chimneys, fracture zones, and lateral transport layers such as large sand bodies and unconformity surfaces, forming a single or composite transport framework. A new natural gas accumulation model is proposed for ultra-deep water and ultra-shallow layers, that is, dual source hydrocarbon supply, gas chimney and submarine fan composite migration, deep-sea mudstone-mass transport deposits mudstone-hydrate-bearing strata ternary sealing, late dynamic accumulation, and large-scale enrichment at ridges. The new understanding obtained from the research has reference and enlightening significance for the next step of deepwater and ultra-shallow layers, as well as oil and gas exploration in related fields or regions.

  • WANG Qinghua, YANG Haijun, YANG Wei
    Petroleum Exploration and Development. 2025, 52(1): 79-94. https://doi.org/10.1016/S1876-3804(25)60006-1

    Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression, Tarim Basin, over recent years. A new round of comprehensive geological research has formed four new understandings: (1) Establish structural model consisting of multi-detachment composite, multi-stage structural superposition and multi-layer deformation. Multi-stage structural traps are overlapped vertically, and a series of structural traps are discovered in underlying ultra-deep layers. (2) Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems, and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks. (3) The formation of large oil and gas fields is controlled by four factors which are source, reservoir, cap rocks and fault. Based on the spatial configuration relationship of these four factors, a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established. (4) The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas. The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu, tight sandstone gas of Jurassic Ahe Formation in the northern structural zone, multi-target layer lithological oil and gas reservoirs in Zhongqiu-Dina structural zone, lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas. Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations, Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas. The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.

  • ZOU Caineng, LI Shixiang, XIONG Bo, CHEN Yanpeng, ZHANG Guosheng, XIE Xiaoping, LIU Hanlin, MA Feng, LIANG Yingbo, ZHU Kai, GUAN Chunxiao, PAN Songqi, HOU Meifang, YUAN Yilin, LUO Shuanghan
    Petroleum Exploration and Development. 2024, 51(4): 1066-1082. https://doi.org/10.1016/S1876-3804(24)60525-2

    Super oil and gas basins provide the energy foundation for social progress and human development. In the context of climate change and carbon peak and carbon neutrality goals, constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins. Under the framework of a green and intelligent energy system primarily based on “four news”, new energy, new electricity, new energy storage, and new intelligence, integrating a “super energy system” composed of a huge amount of underground resources of coal, oil, gas and heat highly overlapping with abundant wind and solar energy resources above ground, and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy, with a carbon neutrality system centered around carbon cycling is essential. This paper aims to select the traditional oil and gas basins as “super energy basins” with the conditions to build world-class energy production and demonstration bases for carbon neutrality. The Ordos Basin has unique regional advantages, including abundant fossil fuel and new energy resources, as well as matching CO2 sources and sinks, position it as a carbon neutrality “super energy basin” which explores the path of transformation of traditional oil and gas basins. Under the integrated development concept and mode of “coal + oil + gas + new energy + carbon capture, utilization and storage (CCUS)/carbon capture and storage (CCS)”, the carbon neutrality in super energy basin is basically achieved, which enhance energy supply and contribute to the carbon peak and carbon neutrality goals, establish a modern energy industry and promote regional green and sustainable development. The pioneering construction of the world-class carbon neutrality “super energy system” demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins, which is of great significance to the global energy revolution under carbon neutrality.

  • TANG Yong, JIA Chengzao, CHEN Fangwen, HE Wenjun, ZHI Dongming, SHAN Xiang, YOU Xincai, JIANG Lin, ZOU Yang, WU Tao, XIE An
    Petroleum Exploration and Development. 2025, 52(1): 112-124. https://doi.org/10.1016/S1876-3804(25)60008-5

    Based on the experimental results of casting thin section, low temperature nitrogen adsorption, high pressure mercury injection, nuclear magnetic resonance T2 spectrum, contact angle and oil-water interfacial tension, the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag, Junggar Basin, are revealed. (1) With the decrease of reservoir particle size, the volume of pores connected by large throats and the volume of large pores show a decreasing trend, and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner. The upper limits of throat radius, porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7 μm, 8% and 0.1×10?3 μm2, respectively. (2) As the reservoir particle size decreases, the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner. With the increase of driving pressure, the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing, respectively. (3) With the increase of throat radius, the driving pressure of reservoir with different particle levels presents three stages, namely rapid decrease, slow decrease and stabilization. The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius. According to the above experimental analysis, it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.

  • LI Guoxin, JIA Chengzao, ZHAO Qun, ZHOU Tianqi, GAO Jinliang
    Petroleum Exploration and Development. 2025, 52(1): 33-49. https://doi.org/10.1016/S1876-3804(25)60003-6
    Crossref(1)

    Coal measures are significant hydrocarbon source rocks and reservoirs in petroliferous basins. Many large gas fields and coalbed methane fields globally are originated from coal-measure source rocks or accumulated in coal rocks. Inspired by the discovery of shale oil and gas, and guided by “the overall exploration concept of considering coal rock as reservoir”, breakthroughs in the exploration and development of coal-rock gas have been achieved in deep coal seams with favorable preservation conditions, thereby opening up a new development frontier for the unconventional gas in coal-rock reservoirs. Based on the data from exploration and development practices, a systematic study on the accumulation mechanism of coal-rock gas has been conducted. The mechanisms of “three fields” controlling coal-rock gas accumulation are revealed. It is confirmed that the coal-rock gas is different from CBM in accumulation process. The whole petroleum systems in the Carboniferous-Permian transitional facies coal measures of the eastern margin of the Ordos Basin and in the Jurassic continental facies coal measures of the Junggar Basin are characterized, and the key research directions for further developing the whole petroleum system theory of coal measures are proposed. Coal rocks, compared to shale, possess intense hydrocarbon generation potential, strong adsorption capacity, dual-medium reservoir properties, and partial or weak oil and gas self-sealing capacity. Additionally, unlike other unconventional gas such as shale gas and tight gas, coal-rock gas exhibits more complex accumulation characteristics, and its accumulation requires a certain coal-rock play form lithological and structural traps. Coal-rock gas also has the characteristics of conventional fractured gas reservoirs. Compared with the basic theory and model of the whole petroleum system established based on detrital rock formations, coal measures have distinct characteristics and differences in coal-rock reservoirs and source-reservoir coupling. The whole petroleum system of coal measures is composed of various types of coal-measure hydrocarbon plays with coal (and dark shale) in coal measures as source rock and reservoir, and with adjacent tight layers as reservoirs or cap or transport layers. Under the action of source-reservoir coupling, coal-rock gas is accumulated in coal-rock reservoirs with good preservation conditions, tight oil/gas is accumulated in tight layers, conventional oil/gas is accumulated in traps far away from sources, and coalbed methane is accumulated in coal-rock reservoirs damaged by later geological processes. The proposed whole petroleum system of coal measures represents a novel type of whole petroleum system.

  • GUO Xusheng, WANG Ruyue, SHEN Baojian, WANG Guanping, WAN Chengxiang, WANG Qianru
    Petroleum Exploration and Development. 2025, 52(1): 17-32. https://doi.org/10.1016/S1876-3804(25)60002-4
    Crossref(1)

    By reviewing the research progress and exploration practices of shale gas geology in China, analyzing and summarizing the geological characteristics, enrichment laws, and resource potential of different types of shale gas, the following understandings have been obtained: (1) Marine, transitional, and lacustrine shales in China are distributed from old to new in geological age, and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases. (2) The sedimentary environment controls the type of source-reservoir configuration, which is the basis of “hydrocarbon generation and reservoir formation”. The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration, with occasional source-reservoir separation. The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis. (3) The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas. Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types. (4) Marine shale remains the main battlefield for increasing shale gas reserves and production in China, while transitional and lacustrine shales are expected to become important replacement areas. It is recommended to carry out the shale gas exploration at three levels: Accelerate the exploration of Silurian, Cambrian, and Permian marine shales in the Upper-Middle Yangtze region; make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region, the new Ordovician marine shale strata in the North China region, the transitional shales of the Carboniferous and Permian, as well as the Mesozoic lacustrine shale gas in basins such as Sichuan, Ordos and Songliao; explore and prepare for new shale gas exploration areas such as South China and Northwest China, providing technology and resource reserves for the sustainable development of shale gas in China.

  • LI Ning, LIU Peng, WU Hongliang, LI Yusheng, ZHANG Wenhao, WANG Kewen, FENG Zhou, WANG Hao
    Petroleum Exploration and Development. 2024, 51(4): 839-851. https://doi.org/10.1016/S1876-3804(24)60510-0

    Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies, such as fractures, caves and faults, within a range of tens of meters from the wellbore, greatly expanding the application scope of well logging technology. This article reviews the development history of the technology and focuses on introducing key methods, software, and on-site applications of acoustic reflection imaging logging technology. Based on the analyses of major challenges faced by existing technologies, and in conjunction with the practical production requirements of oilfields, the further development directions of acoustic reflection imaging logging are proposed. Following the current approach that utilizes the reflection coefficients, derived from the computation of acoustic slowness and density, to perform seismic inversion constrained by well logging, the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves. It is essential to advance research in imaging of fractures within shale reservoirs, the assessment of hydraulic fracturing effectiveness, the study of geosteering while drilling, and the innovation in instruments of acoustic reflection imaging logging technology.

  • YUAN Shiyi, HAN Haishui, WANG Hongzhuang, LUO Jianhui, WANG Qiang, LEI Zhengdong, XI Changfeng, LI Junshi
    Petroleum Exploration and Development. 2024, 51(4): 963-980. https://doi.org/10.1016/S1876-3804(24)60518-5
    Crossref(1)

    This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery (EOR) methods for mature oilfields and continental shale oil development, analyzes the problems of EOR methods, and proposes the relevant research prospects. The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing. The EOR methods for conventional and shale oil development are classified as improved water flooding (e.g. nano-water flooding), chemical flooding (e.g. low-concentration middle-phase micro-emulsion flooding), gas flooding (e.g. micro/nano bubble flooding), thermal recovery (e.g. air injection thermal-aided miscible flooding), and multi-cluster uniform fracturing/water-free fracturing, which are discussed in this paper for their mechanisms, approaches, and key technique researches and field tests. These methods have been studied with remarkable progress, and some achieved ideal results in field tests. Nonetheless, some problems still exist, such as inadequate research on mechanisms, imperfect matching technologies, and incomplete industrial chains. It is proposed to further strengthen the basic researches and expand the field tests, thereby driving the formation, promotion and application of new technologies.

  • HUANG Zhongwei, SHEN Yazhou, WU Xiaoguang, LI Gensheng, LONG Tengda, ZOU Wenchao, SUN Weizhen, SHEN Haoyang
    Petroleum Exploration and Development. 2025, 52(1): 170-181. https://doi.org/10.1016/S1876-3804(25)60012-7

    This paper investigates the macroscopic and microscopic characteristics of viscosity reduction and quality improvement of heavy oil in a supercritical water environment through laboratory experiments and testing. The effect of three reaction parameters, i.e. reaction temperature, reaction time and oil-water ratio, is analyzed on the product and their correlation with viscosity. The results show that the flow state of heavy oil is significantly improved with a viscosity reduction of 99.4% in average after the reaction in the supercritical water. Excessively high reaction temperature leads to a higher content of resins and asphaltenes, with significantly increasing production of coke. The optimal temperature ranges in 380-420 °C. Prolonged reaction time could continuously increase the yield of light oil, but it will also results in the growth of resins and asphaltenes, with the optimal reaction time of 150 min. Reducing the oil-water ratio helps improve the diffusion environment within the reaction system and reduce the content of resins and asphaltenes, but it will increase the cost of heavy oil treatment. An oil-water ratio of 1︰2 is considered as optimum to balance the quality improvement, viscosity reduction and reaction economics. The correlation of the three reaction parameters relative to the oil sample viscosity is ranked as temperature, time and oil-water ratio. Among the four fractions of heavy oil, the viscosity is dominated by asphaltene content, followed by aromatic content and less affected by resins and saturates contents.

  • ZENG Lianbo, SONG Yichen, HAN Jun, HAN Jianfa, YAO Yingtao, HUANG Cheng, ZHANG Yintao, TAN Xiaolin, LI Hao
    Petroleum Exploration and Development. 2025, 52(1): 143-156. https://doi.org/10.1016/S1876-3804(25)60010-3

    This study comprehensively uses various methods such as production dynamic analysis, fluid inclusion thermometry and carbon-oxygen isotopic compositions testing, based on outcrop, core, well-logging, 3D seismic, geochemistry experiment and production test data, to systematically explore the control mechanisms of structure and fluid on the scale, quality, effectiveness and connectivity of ultra-deep fault-controlled carbonate fractured-vuggy reservoirs in the Tarim Basin. The results show that reservoir scale is influenced by strike-slip fault scale, structural position, and mechanical stratigraphy. Larger faults tend to correspond to larger reservoir scales. The reservoir scale of contractional overlaps is larger than that of extensional overlaps, while pure strike-slip segments are small. The reservoir scale is enhanced at fault intersection, bend, and tip segments. Vertically, the heterogeneity of reservoir development is controlled by mechanical stratigraphy, with strata of higher brittleness indices being more conducive to the development of fractured-vuggy reservoirs. Multiple phases of strike-slip fault activity and fluid alterations contribute to fractured-vuggy reservoir effectiveness evolution and heterogeneity. Meteoric water activity during the Late Caledonian to Early Hercynian period was the primary phase of fractured-vuggy reservoir formation. Hydrothermal activity in the Late Hercynian period further intensified the heterogeneity of effective reservoir space distribution. The study also reveals that fractured-vuggy reservoir connectivity is influenced by strike-slip fault structural position and present in-situ stress field. The reservoir connectivity of extensional overlaps is larger than that of pure strike-slip segments, while contractional overlaps show worse reservoir connectivity. Additionally, fractured-vuggy reservoirs controlled by strike-slip faults that are nearly parallel to the present in-situ stress direction exhibit excellent connectivity. Overall, high-quality reservoirs are distributed at the fault intersection of extensional overlaps, the central zones of contractional overlaps, pinnate fault zones at intersection, bend, and tip segments of pure strike-slip segments. Vertically, they are concentrated in mechanical stratigraphy with high brittleness indices.

  • XIONG Bo, XU Hao, FANG Chaohe, LI Shixiang, TANG Shuling, WANG Shejiao, WU Jingjie, SONG Xuejing, ZHANG Lu, WANG Jinwei, WEI Xiangquan, XIN Fudong, TANG Boning, LONG Yin
    Petroleum Exploration and Development. 2025, 52(1): 258-271. https://doi.org/10.1016/S1876-3804(25)60019-X

    China has abundant resources of hot dry rocks. However, due to the fact that the evaluation methods for favorable areas are mainly qualitative, and the evaluation indicators and standards are inconsistent, which restrict the evaluation efficiency and exploration process of dry hot rocks. This paper is based on the understanding of the geologic features and genesis mechanisms of hot dry rocks in China and abroad. By integrating the main controlling factors of hot dry rock formation, and using index grading and quantification, the fuzzy hierarchical comprehensive method is applied to establish an evaluation system and standards for favorable areas of hot dry rocks. The evaluation system is based on four indicators: heat source, thermal channel, thermal reservoir and cap rock. It includes 11 evaluation parameters, including time of magmatic/volcanic activity, depth of molten mass or magma chamber, distribution of discordogenic faults, burial depth of thermal reservoir, cap rock type and thickness, surface thermal anomaly, heat flow, geothermal gradient, Moho depth, Curie depth, Earthquake magnitude and focal depth. Each parameter is divided into 3 levels. Applying this evaluation system to assess hot dry rock in central Inner Mongolia revealed that Class I favorable zones cover approximately 494 km2, while Class II favorable zones span about 5.7×104 km2. The Jirgalangtu Sag and Honghaershute Sag in the Erlian Basin, along with Reshuitang Town in Keshiketeng Banner, Reshui Town in Ningcheng County, and Reshuitang Town in Aohan Banner of Chifeng City, are identified as Class I favorable zones for hot dry rock resources. These areas are characterized by high-temperature subsurface molten bodies or magma chambers serving as high-quality heat sources, shallow thermal reservoir depths, and overlying thick sedimentary rock layers acting as caprock. The establishment and application of the evaluation system for favorable areas of hot dry rock are expected to provide new approaches and scientific basis for guiding the practice of selecting hot dry rock areas in China.

  • SUN Longde, ZHU Rukai, ZHANG Tianshu, CAI Yi, FENG Zihui, BAI Bin, JIANG Hang, WANG Bo
    Petroleum Exploration and Development. 2024, 51(6): 1367-1385. https://doi.org/10.1016/S1876-3804(25)60547-7

    This study took the Gulong Shale in the Upper Cretaceous Qingshankou Formation of the Songliao Basin, NE China, as an example. Through paleolake-level reconstruction and comprehensive analyses on types of lamina, vertical associations of lithofacies, as well as stages and controlling factors of sedimentary evolution, the cyclic changes of waters, paleoclimate, and continental clastic supply intensity in the lake basin during the deposition of the Qingshankou Formation were discussed. The impacts of lithofacies compositions/structures on oil-bearing property, the relation between reservoir performance and lithofacies compositions/structures, the differences of lithofacies in mechanical properties, and the shale oil occurrence and movability in different lithofacies were investigated. The insights of this study provide a significant guideline for evaluation of shale oil enrichment layers/zones. The non-marine shale sedimentology is expected to evolve into an interdisciplinary science on the basis of sedimentary petrology and petroleum geology, which reveals the physical, chemical and biological actions, and the distribution characteristics and evolution patterns of minerals, organic matter, pores, fluid, and phases, in the transportation, sedimentation, water-rock interaction, diagenesis and evolution processes. Such research will focus on eight aspects: lithofacies and organic matter distribution prediction under a sequence stratigraphic framework for non-marine shale strata; lithofacies paleogeography of shale strata based on the forward modeling of sedimentation; origins of non-marine shale lamina and log-based identification of lamina combinations; source of organic matter in shale and its enrichment process; non-marine shale lithofacies classification by rigid particles + plastic components + pore-fracture system; multi-field coupling organic-inorganic interaction mechanism in shale diagenesis; new methods and intelligent core technology for shale reservoir multi-scale characterization; and quantitative evaluation and intelligent analysis system of shale reservoir heterogeneity.

  • TAN Xiucheng, HE Ruyi, YANG Wenjie, LUO Bing, SHI Jiangbo, ZHANG Lianjin, LI Minglong, TANG Yuxin, XIAO Di, QIAO Zhanfeng
    Petroleum Exploration and Development. 2025, 52(1): 125-142. https://doi.org/10.1016/S1876-3804(25)60009-7

    This paper discusses the characteristics and formation mechanism of thin dolomite reservoirs in the lower submember of the second member of the Permian Maokou Formation (lower Mao 2 Member) in the Wusheng-Tongnan area of the Sichuan Basin, SW China, through comprehensive analysis of geological, geophysical and geochemical data. The reservoir rocks of the lower Mao 2 Member are dominated by porphyritic vuggy dolomite and calcareous dolomite or dolomitic limestone, which have typical karst characteristics of early diagenetic stage. The dolomites at the edge of the karst system and in the fillings have dissolved estuaries, and the dolomite breccia has micrite envelope and rim cement at the edge, indicating that dolomitization is earlier than the early diagenetic karstification. The shoal facies laminated dolomite is primarily formed by the seepage reflux dolomitization of moderate-salinity seawater. The key factors of reservoir formation are the bioclastic shoal deposition superimposed with seepgae reflux dolomitization and the karstification of early diagenetic stage, which are locally reformed by fractures and hydrothermal processes. The development of dolomite vuggy reservoir is closely related to the upward-shallowing sequence, and mainly occurs in the late highstand of the fourth-order cycle. Moreover, the size of dolomite is closely related to formation thickness, and it is concentrated in the formation thickness conversion area, followed by the thinner area. According to the understanding of insufficient accommodation space in the geomorphic highland and the migration of granular shoal to geomorphic lowland in the late highstand of the third-order cycle, it is proposed that the large-scale shoal-controlled dolomite reservoirs are distributed along structural highs and slopes, and the reservoir-forming model with shoal, dolomitization and karstification jointly controlled by the microgeomorphy and sea-level fluctuation in the sedimentary period is established. On this basis, the paleogeomorphology in the lower Mao 2 Member is restored using well-seismic data, and the reservoir distribution is predicted. The prediction results have been verified by the latest results of exploration wells and tests, which provide an important reference for the prediction of thin dolomite reservoirs under similar geological setting.

  • WENG Dingwei, SUN Qiang, LIANG Hongbo, LEI Qun, GUAN Baoshan, MU Lijun, LIU Hanbin, ZHANG Shaolin, CHAI Lin, HUANG Rui
    Petroleum Exploration and Development. 2025, 52(1): 219-229. https://doi.org/10.1016/S1876-3804(25)60016-4

    A flexible sidetracking stimulation technology of horizontal wells is formed to develop the lateral deep remaining oil and gas resources of the low-permeability mature oilfields. This technology first uses the flexible sidetracking tool to achieve low-cost sidetracking in the old wellbore, and then uses the hydraulic jet technology to induce multiple fractures to fracture. Finally, the bullhead fracturing of multi-cluster temporary plugging for the sidetracking hole is carried out by running the tubing string, to realize the efficient development of the remaining reserves among the wells. The flexible sidetracking stimulation technology involves flexible sidetracking horizontal wells drilling and sidetracking horizontal well fracturing. The flexible sidetracking horizontal well drilling includes three aspects: flexible drill pipe structure and material optimization, drilling technology, and sealed coring tool. The sidetracking horizontal well fracturing includes two aspects: fracturing scheme optimization, fracturing tools and implementation process optimization. The technology has been conducted several rounds of field tests in the Ansai Oilfield of Changqing, China. The results show that by changing well type and reducing row spacing of oil and water wells, the pressure displacement system can be well established to achieve effective pressure transmission and to achieve the purpose of increasing liquid production in low-yield and low-efficiency wells. It is verified that the flexible sidetracking stimulation technology can provide favorable support for accurately developing remaining reserves in low-permeability reservoirs.

  • LI Gensheng, SONG Xianzhi, SHI Yu, WANG Gaosheng, HUANG Zhongwei
    Petroleum Exploration and Development. 2024, 51(4): 1035-1048. https://doi.org/10.1016/S1876-3804(24)60523-9

    To address the key problems in the application of intelligent technology in geothermal development, smart application scenarios for geothermal development are constructed. The research status and existing challenges of intelligent technology in each scenario are analyzed, and the construction scheme of smart geothermal field system is proposed. The smart geothermal field is an organic integration of geothermal development engineering and advanced technologies such as the artificial intelligence. At present, the technology of smart geothermal field is still in the exploratory stage. It has been tested for application in scenarios such as intelligent characterization of geothermal reservoirs, dynamic intelligent simulation of geothermal reservoirs, intelligent optimization of development schemes and smart management of geothermal development. However, it still faces many problems, including the high computational cost, difficult real-time response, multiple solutions and strong model dependence, difficult real-time optimization of dynamic multi-constraints, and deep integration of multi-source data. The construction scheme of smart geothermal field system is proposed, which consists of modules including the full database, intelligent characterization, intelligent simulation and intelligent optimization control. The connection between modules is established through the data transmission and the model interaction. In the next stage, it is necessary to focus on the basic theories and key technologies in each module of the smart geothermal field system, to accelerate the lifecycle intelligent transformation of the geothermal development and utilization, and to promote the intelligent, stable, long-term, optimal and safe production of geothermal resources.

  • ZHANG Gongcheng, TONG Dianjun, CHEN Kai, LIU Hui, FANG Xuan
    Petroleum Exploration and Development. 2024, 51(5): 1165-1182. https://doi.org/10.1016/S1876-3804(25)60533-7
    Crossref(2)

    The Bohai Bay Basin, as a super oil-rich basin in the world, is characterized by cyclic evolution and complex regional tectonic stress field, and its lifecycle tectonic evolution controls the formation of regional source rocks. The main pre-Cenozoic stratigraphic system and lithological distribution are determined through geological mapping, and the dynamics of the pre-Cenozoic geotectonic evolution of the Bohai Bay Basin are investigated systematically using the newly acquired high-quality seismic data and the latest exploration results in the study area. The North China Craton where the Bohai Bay Basin is located in rests at the intersection of three tectonic domains: the Paleo-Asian Ocean, the Tethys Ocean, and the Pacific Ocean. It has experienced the alternation and superposition of tectonic cycles of different periods, directions and natures, and experienced five stages of the tectonic evolution and sedimentary building, i.e. Middle-Late Proterozoic continental rift trough, Early Paleozoic marginal-craton depression carbonate building, Late Paleozoic marine-continental transitional intracraton depression, Mesozoic intracontinental strike-slip-extensional tectonics, and Cenozoic intracontinental rifting. The cyclic evolution of the basin, especially the multi-stage compression, strike-slip and extensional tectonics processes in the Hercynian, Indosinian, Yanshan and Himalayan since the Late Paleozoic, controlled the development, reconstruction and preservation of several sets of high-quality source rocks, represented by the Late Paleozoic Carboniferous-Permian coal-measure source rocks and the Paleogene world-class extra-high-quality lacustrine source rocks, which provided an important guarantee for the hydrocarbon accumulation in the super oil-rich basin.